» Articles » PMID: 21831041

Overexpression of a Cytosolic Pyrophosphatase (TgPPase) Reveals a Regulatory Role of PP(i) in Glycolysis for Toxoplasma Gondii

Overview
Journal Biochem J
Specialty Biochemistry
Date 2011 Aug 12
PMID 21831041
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

PP(i) is a critical element of cellular metabolism as both an energy donor and as an allosteric regulator of several metabolic pathways. The apicomplexan parasite Toxoplasma gondii uses PP(i) in place of ATP as an energy donor in at least two reactions: the glycolytic PP(i)-dependent PFK (phosphofructokinase) and V-H(+)-PPase [vacuolar H(+)-translocating PPase (pyrophosphatase)]. In the present study, we report the cloning, expression and characterization of cytosolic TgPPase (T. gondii soluble PPase). Amino acid sequence alignment and phylogenetic analysis indicates that the gene encodes a family I soluble PPase. Overexpression of the enzyme in extracellular tachyzoites led to a 6-fold decrease in the cytosolic concentration of PP(i) relative to wild-type strain RH tachyzoites. Unexpectedly, this subsequent reduction in PP(i) was associated with a higher glycolytic flux in the overexpressing mutants, as evidenced by higher rates of proton and lactate extrusion. In addition to elevated glycolytic flux, TgPPase-overexpressing tachyzoites also possessed higher ATP concentrations relative to wild-type RH parasites. These results implicate PP(i) as having a significant regulatory role in glycolysis and, potentially, other downstream processes that regulate growth and cell division.

Citing Articles

Maintenance of pyrophosphate homeostasis in multiple subcellular compartments is essential in .

Nwankwo I, Ke H bioRxiv. 2025; .

PMID: 40027813 PMC: 11870574. DOI: 10.1101/2025.02.20.639246.


H-translocating pyrophosphatases in protozoan parasites.

Araujo-Ruiz K, Mondragon-Flores R Parasitol Res. 2024; 123(10):353.

PMID: 39419910 PMC: 11486809. DOI: 10.1007/s00436-024-08362-3.


The inorganic pyrophosphatases of microorganisms: a structural and functional review.

Garcia-Contreras R, de la Mora J, Mora-Montes H, Martinez-Alvarez J, Vicente-Gomez M, Padilla-Vaca F PeerJ. 2024; 12:e17496.

PMID: 38938619 PMC: 11210485. DOI: 10.7717/peerj.17496.


Plasmodium falciparum utilizes pyrophosphate to fuel an essential proton pump in the ring stage and the transition to trophozoite stage.

Solebo O, Ling L, Nwankwo I, Zhou J, Fu T, Ke H PLoS Pathog. 2023; 19(12):e1011818.

PMID: 38048362 PMC: 10732439. DOI: 10.1371/journal.ppat.1011818.


Essential role of pyrophosphate homeostasis mediated by the pyrophosphate-dependent phosphofructokinase in Toxoplasma gondii.

Yang X, Yin X, Liu J, Niu Z, Yang J, Shen B PLoS Pathog. 2022; 18(2):e1010293.

PMID: 35104280 PMC: 8836295. DOI: 10.1371/journal.ppat.1010293.


References
1.
Josse J . Constitutive inorganic pyrophosphatase of Escherichia coli. II. Nature and binding of active substrate and the role of magnesium. J Biol Chem. 1966; 241(9):1948-55. View

2.
Dzierszinski F, Popescu O, Toursel C, Slomianny C, Yahiaoui B, Tomavo S . The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans. J Biol Chem. 1999; 274(35):24888-95. DOI: 10.1074/jbc.274.35.24888. View

3.
Lahti R . Microbial inorganic pyrophosphatases. Microbiol Rev. 1983; 47(2):169-78. PMC: 281570. DOI: 10.1128/mr.47.2.169-178.1983. View

4.
Moreno B, Bailey B, Luo S, Martin M, Kuhlenschmidt M, Moreno S . (31)P NMR of apicomplexans and the effects of risedronate on Cryptosporidium parvum growth. Biochem Biophys Res Commun. 2001; 284(3):632-7. DOI: 10.1006/bbrc.2001.5009. View

5.
Gubbels M, Li C, Striepen B . High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob Agents Chemother. 2002; 47(1):309-16. PMC: 149035. DOI: 10.1128/AAC.47.1.309-316.2003. View