» Articles » PMID: 21803344

Methamphetamine Transiently Increases the Blood-brain Barrier Permeability in the Hippocampus: Role of Tight Junction Proteins and Matrix Metalloproteinase-9

Overview
Journal Brain Res
Specialty Neurology
Date 2011 Aug 2
PMID 21803344
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9.

Citing Articles

Decreasing β-Catenin Leads to Altered Endothelial Morphology, Increased Barrier Permeability and Cognitive Impairment During Chronic Methamphetamine Exposure.

Qiu H, Zhang M, Chen C, Wang H, Yue X Int J Mol Sci. 2025; 26(4).

PMID: 40003980 PMC: 11854931. DOI: 10.3390/ijms26041514.


Therapeutic targeting of neuroinflammation in methamphetamine use disorder.

Jeffery N, Mock P, Yang K, Tham C, Israf D, Li H Future Med Chem. 2024; 17(2):237-257.

PMID: 39727147 PMC: 11749361. DOI: 10.1080/17568919.2024.2447226.


Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier.

Cazalla E, Cuadrado A, Garcia-Yague A Fluids Barriers CNS. 2024; 21(1):93.

PMID: 39574123 PMC: 11580557. DOI: 10.1186/s12987-024-00599-5.


Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain.

Elhadi K, Daiwile A, Cadet J Neurosci Biobehav Rev. 2024; 155:105440.

PMID: 38707245 PMC: 11068368. DOI: 10.1016/j.neubiorev.2023.105440.


Targeting the cytoskeleton as a therapeutic approach to substance use disorders.

Pandey S, Miller C Pharmacol Res. 2024; 202:107143.

PMID: 38499081 PMC: 11034636. DOI: 10.1016/j.phrs.2024.107143.