» Articles » PMID: 21802405

Hydrogen-bond Energetics Drive Helix Formation in Membrane Interfaces

Overview
Specialties Biochemistry
Biophysics
Date 2011 Aug 2
PMID 21802405
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The free energy cost ΔG of partitioning many unfolded peptides into membrane interfaces is unfavorable due to the cost of partitioning backbone peptide bonds. The partitioning cost is dramatically reduced if the peptide bonds participate in hydrogen bonds. The reduced cost underlies secondary structure formation by amphiphilic peptides partitioned into membrane interfaces through a process referred to as partitioning-folding coupling. This coupling is characterized by the free energy reduction per residue, ∆G(res) that drives folding. There is some debate about the correct value of ∆G(res) and its dependence on the hydrophobic moment (μ(H)) of amphiphilic α-helical peptides. We show how to compute ∆G(res) correctly. Using published data for two families of peptides with different hydrophobic moments and charges, we find that ∆G(res) does not depend upon μ(H). The best estimate of ∆G(res) is -0.37 ± 0.02 kcal mol(-1). This article is part of a Special Issue entitled: Membrane protein structure and function.

Citing Articles

Modeling the Effect on a Novel Fungal Peptaibol Placed in an All-Atom Bacterial Membrane Mimicking System via Accelerated Molecular Dynamics Simulations.

Tyagi C, Marik T, Szekeres A, Vagvolgyi C, Kredics L, Otvos F Life (Basel). 2023; 13(12).

PMID: 38137889 PMC: 10744397. DOI: 10.3390/life13122288.


Structural flexibility of apolipoprotein E-derived arginine-rich peptides improves their cell penetration capability.

Takechi-Haraya Y, Ohgita T, Usui A, Nishitsuji K, Uchimura K, Abe Y Sci Rep. 2023; 13(1):19396.

PMID: 37938626 PMC: 10632520. DOI: 10.1038/s41598-023-46754-0.


A molecular dynamics study of cell-penetrating peptide transportan-10 (TP10): Binding, folding and insertion to transmembrane state in zwitterionic membrane.

Bennett A, Cranford K, Bates A, Sabatini C, Lee H Biochim Biophys Acta Biomembr. 2023; 1866(1):184218.

PMID: 37634858 PMC: 10843101. DOI: 10.1016/j.bbamem.2023.184218.


Alternative Antibiotics in Dentistry: Antimicrobial Peptides.

Griffith A, Mateen A, Markowitz K, Singer S, Cugini C, Shimizu E Pharmaceutics. 2022; 14(8).

PMID: 36015305 PMC: 9412702. DOI: 10.3390/pharmaceutics14081679.


Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides.

Hao M, Zhang L, Chen P Int J Mol Sci. 2022; 23(16).

PMID: 36012300 PMC: 9409441. DOI: 10.3390/ijms23169038.


References
1.
Klocek G, Schulthess T, Shai Y, Seelig J . Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry. 2009; 48(12):2586-96. DOI: 10.1021/bi802127h. View

2.
Schow E, Freites J, Myint P, Bernsel A, von Heijne G, White S . Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol. 2010; 239(1-2):35-48. PMC: 3030942. DOI: 10.1007/s00232-010-9330-x. View

3.
Ladokhin A, White S . Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol. 1999; 285(4):1363-9. DOI: 10.1006/jmbi.1998.2346. View

4.
Ladokhin A, Selsted M, White S . Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J. 1997; 72(2 Pt 1):794-805. PMC: 1185602. DOI: 10.1016/s0006-3495(97)78713-7. View

5.
Fernandez-Vidal M, White S, Ladokhin A . Membrane partitioning: "classical" and "nonclassical" hydrophobic effects. J Membr Biol. 2010; 239(1-2):5-14. PMC: 3030945. DOI: 10.1007/s00232-010-9321-y. View