» Articles » PMID: 21778400

Cilia-like Beating of Active Microtubule Bundles

Overview
Journal Science
Specialty Science
Date 2011 Jul 23
PMID 21778400
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanism that drives the regular beating of individual cilia and flagella, as well as dense ciliary fields, remains unclear. We describe a minimal model system, composed of microtubules and molecular motors, which self-assemble into active bundles exhibiting beating patterns reminiscent of those found in eukaryotic cilia and flagella. These observations suggest that hundreds of molecular motors, acting within an elastic microtubule bundle, spontaneously synchronize their activity to generate large-scale oscillations. Furthermore, we also demonstrate that densely packed, actively bending bundles spontaneously synchronize their beating patterns to produce collective behavior similar to metachronal waves observed in ciliary fields. The simple in vitro system described here could provide insights into beating of isolated eukaryotic cilia and flagella, as well as their synchronization in dense ciliary fields.

Citing Articles

Open quantum systems theory of ultraweak ultraviolet photon emissions: Revisiting Gurwitsch's onion experiment as a prototype for quantum biology.

Babcock N Comput Struct Biotechnol J. 2024; 26:78-91.

PMID: 39717158 PMC: 11664013. DOI: 10.1016/j.csbj.2024.11.030.


Near-field hydrodynamic interactions determine travelling wave directions of collectively beating cilia.

Cheng Z, Vilfan A, Wang Y, Golestanian R, Meng F J R Soc Interface. 2024; 21(217):20240221.

PMID: 39106950 PMC: 11303030. DOI: 10.1098/rsif.2024.0221.


Collective Molecular Machines: Multidimensionality and Reconfigurability.

Wang B, Lu Y Nanomicro Lett. 2024; 16(1):155.

PMID: 38499833 PMC: 10948734. DOI: 10.1007/s40820-024-01379-4.


Wave-like oscillations of clamped microtubules driven by collective dynein transport.

Yadav S, Khatri D, Soni A, Khetan N, Athale C Biophys J. 2024; 123(4):509-524.

PMID: 38258292 PMC: 10912927. DOI: 10.1016/j.bpj.2024.01.016.


The reaction-diffusion basis of animated patterns in eukaryotic flagella.

Cass J, Bloomfield-Gadelha H Nat Commun. 2023; 14(1):5638.

PMID: 37758714 PMC: 10533521. DOI: 10.1038/s41467-023-40338-2.


References
1.
Heuser T, Raytchev M, Krell J, Porter M, Nicastro D . The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol. 2009; 187(6):921-33. PMC: 2806320. DOI: 10.1083/jcb.200908067. View

2.
Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte J, Hirokawa N . Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell. 2005; 121(4):633-644. DOI: 10.1016/j.cell.2005.04.008. View

3.
Hentrich C, Surrey T . Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol. 2010; 189(3):465-80. PMC: 2867311. DOI: 10.1083/jcb.200910125. View

4.
Needleman D, Ojeda-Lopez M, Raviv U, Ewert K, Jones J, Miller H . Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys Rev Lett. 2004; 93(19):198104. DOI: 10.1103/PhysRevLett.93.198104. View

5.
GIBBONS B, Gibbons I . Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972; 54(1):75-97. PMC: 2108865. DOI: 10.1083/jcb.54.1.75. View