» Articles » PMID: 21778364

Tet Proteins Can Convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine

Overview
Journal Science
Specialty Science
Date 2011 Jul 23
PMID 21778364
Citations 1680
Authors
Affiliations
Soon will be listed here.
Abstract

5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity-dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.

Citing Articles

cfDNA hydroxymethylcytosine profiling for detection metastasis and recurrence of Esophageal Squamous Cell Carcinoma.

Kuerban S, Chen H, Chen L, Zhang L, Li X, Zhen B World J Surg Oncol. 2025; 23(1):90.

PMID: 40089765 DOI: 10.1186/s12957-025-03747-9.


TET2 deficiency increases the competitive advantage of hematopoietic stem and progenitor cells through upregulation of thrombopoietin receptor signaling.

Yang Y, Cathelin S, Liu A, Subedi A, Maher A, Hosseini M Nat Commun. 2025; 16(1):2384.

PMID: 40064887 PMC: 11894142. DOI: 10.1038/s41467-025-57614-y.


TET-mediated 5hmC in breast cancer: mechanism and clinical potential.

Zhang J, Aishan N, Zheng Z, Ju S, He Q, Meng Q Epigenetics. 2025; 20(1):2473250.

PMID: 40014756 PMC: 11869774. DOI: 10.1080/15592294.2025.2473250.


TET2 downregulation enhances the antitumor efficacy of CD19 CAR T cells in a preclinical model.

Kim Y, Jeun M, Lee H, Choi J, Park S, Park C Exp Hematol Oncol. 2025; 14(1):23.

PMID: 40012079 PMC: 11866829. DOI: 10.1186/s40164-025-00609-8.


Inhibitor of Growth Proteins: Epigenetic Regulators Shaping Neurobiology.

Xu Z, Xu H, Shi J, Liu R, Li X, Liu S Biomolecules. 2025; 15(2).

PMID: 40001584 PMC: 11852745. DOI: 10.3390/biom15020281.


References
1.
Guo J, Su Y, Zhong C, Ming G, Song H . Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011; 145(3):423-34. PMC: 3088758. DOI: 10.1016/j.cell.2011.03.022. View

2.
Gehring M, Reik W, Henikoff S . DNA demethylation by DNA repair. Trends Genet. 2009; 25(2):82-90. DOI: 10.1016/j.tig.2008.12.001. View

3.
Boysen G, Collins L, Liao S, Luke A, Pachkowski B, Watters J . Analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine by ultra high pressure liquid chromatography-heat assisted electrospray ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 878(3-4):375-80. PMC: 5085061. DOI: 10.1016/j.jchromb.2009.12.004. View

4.
Williams A, Hill S, Ibrahim I . Improved spectrophotometric methods for the assay of carbodiimides. Anal Biochem. 1981; 114(1):173-6. DOI: 10.1016/0003-2697(81)90470-x. View

5.
Huang L, Farnet C, Ehrlich K, Ehrlich M . Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res. 1982; 10(5):1579-91. PMC: 320551. DOI: 10.1093/nar/10.5.1579. View