» Articles » PMID: 21761647

Optimal Weights for Multi-atlas Label Fusion

Overview
Date 2011 Jul 19
PMID 21761647
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Multi-atlas based segmentation has been applied widely in medical image analysis. For label fusion, previous studies show that image similarity-based local weighting techniques produce the most accurate results. However, these methods ignore the correlations between results produced by different atlases. Furthermore, they rely on pre-selected weighting models and ad hoc methods to choose model parameters. We propose a novel label fusion method to address these limitations. Our formulation directly aims at reducing the expectation of the combined error and can be efficiently solved in a closed form. In our hippocampus segmentation experiment, our method significantly outperforms similarity-based local weighting. Using 20 atlases, we produce results with 0.898 +/- 0.019 Dice overlap to manual labelings for controls.

Citing Articles

Dynamic multiatlas selection-based consensus segmentation of head and neck structures from CT images.

Haq R, Berry S, Deasy J, Hunt M, Veeraraghavan H Med Phys. 2019; 46(12):5612-5622.

PMID: 31587300 PMC: 7042892. DOI: 10.1002/mp.13854.


Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age.

Guo T, Winterburn J, Pipitone J, Duerden E, Park M, Chau V Neuroimage Clin. 2016; 9:176-93.

PMID: 26740912 PMC: 4561668. DOI: 10.1016/j.nicl.2015.07.019.


Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.

Roy S, He Q, Sweeney E, Carass A, Reich D, Prince J IEEE J Biomed Health Inform. 2015; 19(5):1598-609.

PMID: 26340685 PMC: 4562064. DOI: 10.1109/JBHI.2015.2439242.


Contour-Driven Atlas-Based Segmentation.

Wachinger C, Fritscher K, Sharp G, Golland P IEEE Trans Med Imaging. 2015; 34(12):2492-505.

PMID: 26068202 PMC: 4756595. DOI: 10.1109/TMI.2015.2442753.


Evaluation of Multi-Atlas Label Fusion for In Vivo MRI Orbital Segmentation.

Panda S, Asman A, Khare S, Thompson L, Mawn L, Smith S J Med Imaging (Bellingham). 2015; 1(2).

PMID: 25558466 PMC: 4280790. DOI: 10.1117/1.JMI.1.2.024002.


References
1.
Warfield S, Zou K, Wells W . Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004; 23(7):903-21. PMC: 1283110. DOI: 10.1109/TMI.2004.828354. View

2.
Collins D, Pruessner J . Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage. 2010; 52(4):1355-66. DOI: 10.1016/j.neuroimage.2010.04.193. View

3.
Leung K, Barnes J, Ridgway G, Bartlett J, Clarkson M, MacDonald K . Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. Neuroimage. 2010; 51(4):1345-59. PMC: 2873209. DOI: 10.1016/j.neuroimage.2010.03.018. View

4.
Scahill R, Schott J, Stevens J, Rossor M, Fox N . Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A. 2002; 99(7):4703-7. PMC: 123711. DOI: 10.1073/pnas.052587399. View

5.
Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C . Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging. 2009; 28(8):1266-77. DOI: 10.1109/TMI.2009.2014372. View