» Articles » PMID: 21746853

α-Synuclein and ALPS Motifs Are Membrane Curvature Sensors Whose Contrasting Chemistry Mediates Selective Vesicle Binding

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2011 Jul 13
PMID 21746853
Citations 110
Authors
Affiliations
Soon will be listed here.
Abstract

Membrane curvature sensors have diverse structures and chemistries, suggesting that they might have the intrinsic capacity to discriminate between different types of vesicles in cells. In this paper, we compare the in vitro and in vivo membrane-binding properties of two curvature sensors that form very different amphipathic helices: the amphipathic lipid-packing sensor (ALPS) motif of a Golgi vesicle tether and the synaptic vesicle protein α-synuclein, a causative agent of Parkinson's disease. We demonstrate the mechanism by which α-synuclein senses membrane curvature. Unlike ALPS motifs, α-synuclein has a poorly developed hydrophobic face, and this feature explains its dual sensitivity to negatively charged lipids and to membrane curvature. When expressed in yeast cells, these two curvature sensors were targeted to different classes of vesicles, those of the early secretory pathway for ALPS motifs and to negatively charged endocytic/post-Golgi vesicles in the case of α-synuclein. Through structures with complementary chemistries, α-synuclein and ALPS motifs target distinct vesicles in cells by direct interaction with different lipid environments.

Citing Articles

The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics.

Vargova R, Chevreau R, Alves M, Courbin C, Terry K, Legrand P Nat Microbiol. 2025; 10(2):495-508.

PMID: 39849086 DOI: 10.1038/s41564-024-01904-6.


Amphipathic helices sense the inner nuclear membrane environment through lipid packing defects.

Lee S, Le Roux A, Mors M, Vanni S, Roca-Cusachs P, Bahmanyar S bioRxiv. 2024; .

PMID: 39605395 PMC: 11601446. DOI: 10.1101/2024.11.14.623600.


Folding of N-terminally acetylated α-synuclein upon interaction with lipid membranes.

Tang Z, Fang Z, Wu X, Liu J, Tian L, Li X Biophys J. 2024; 123(21):3698-3720.

PMID: 39306670 PMC: 11560312. DOI: 10.1016/j.bpj.2024.09.019.


Exploring the Properties of Curved Lipid Membranes: Comparative Analysis of Atomistic and Coarse-Grained Force Fields.

Domanska M, Setny P J Phys Chem B. 2024; 128(29):7160-7171.

PMID: 38990314 PMC: 11284798. DOI: 10.1021/acs.jpcb.4c02310.


Protein-membrane interactions: sensing and generating curvature.

Johnson D, Kou O, Bouzos N, Zeno W Trends Biochem Sci. 2024; 49(5):401-416.

PMID: 38508884 PMC: 11069444. DOI: 10.1016/j.tibs.2024.02.005.


References
1.
Sun Y, Carroll S, Kaksonen M, Toshima J, Drubin D . PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J Cell Biol. 2007; 177(2):355-67. PMC: 2064142. DOI: 10.1083/jcb.200611011. View

2.
Cardenas J, Rivero S, Goud B, Bornens M, Rios R . Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms. BMC Biol. 2009; 7:56. PMC: 2744908. DOI: 10.1186/1741-7007-7-56. View

3.
Sato K, Nakano A . Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles. Mol Biol Cell. 2003; 14(7):3055-63. PMC: 165697. DOI: 10.1091/mbc.e03-02-0115. View

4.
Cormack B, Bertram G, Egerton M, Gow N, Falkow S, Brown A . Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology (Reading). 1997; 143 ( Pt 2):303-311. DOI: 10.1099/00221287-143-2-303. View

5.
Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton M, Sudhof T . Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010; 329(5999):1663-7. PMC: 3235365. DOI: 10.1126/science.1195227. View