Lewis R, Keilholz A, Smith C, Burd E, Nichols N
Front Physiol. 2024; 15:1488951.
PMID: 39703667
PMC: 11656052.
DOI: 10.3389/fphys.2024.1488951.
Keilholz A, Pathak I, Smith C, Osman K, Smith L, Oti G
Front Neurol. 2024; 15:1441529.
PMID: 39296960
PMC: 11408480.
DOI: 10.3389/fneur.2024.1441529.
Miller Jr S, Juarez Lopez E, Grittner J, Dougherty B
Respir Physiol Neurobiol. 2023; 320:104185.
PMID: 37935342
PMC: 10842720.
DOI: 10.1016/j.resp.2023.104185.
Ciesla M, Seven Y, Allen L, Smith K, Gonzalez-Rothi E, Mitchell G
Exp Neurol. 2021; 347:113903.
PMID: 34699788
PMC: 8848979.
DOI: 10.1016/j.expneurol.2021.113903.
Borkowski L, Keilholz A, Smith C, Canda K, Nichols N
Exp Neurol. 2021; 347:113892.
PMID: 34634309
PMC: 10805451.
DOI: 10.1016/j.expneurol.2021.113892.
Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
Fields D, Braegelmann K, Meza A, Mickelson C, Gumnit M, Baker T
J Physiol. 2019; 597(15):3951-3967.
PMID: 31280489
PMC: 6716600.
DOI: 10.1113/JP277676.
Cervical spinal 5-HT and 5-HT receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation.
Tadjalli A, Mitchell G
J Appl Physiol (1985). 2019; 127(2):432-443.
PMID: 31219768
PMC: 6732436.
DOI: 10.1152/japplphysiol.01113.2018.
Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
Huxtable A, Kopp E, Dougherty B, Watters J, Mitchell G
Respir Physiol Neurobiol. 2017; 256:21-28.
PMID: 29233741
PMC: 5994173.
DOI: 10.1016/j.resp.2017.12.004.
Pharmacological modulation of hypoxia-induced respiratory neuroplasticity.
Turner S, Streeter K, Greer J, Mitchell G, Fuller D
Respir Physiol Neurobiol. 2017; 256:4-14.
PMID: 29197629
PMC: 6155458.
DOI: 10.1016/j.resp.2017.11.008.
Intermittent but not sustained moderate hypoxia elicits long-term facilitation of hypoglossal motor output.
Wilkerson J, Devinney M, Mitchell G
Respir Physiol Neurobiol. 2017; 256:15-20.
PMID: 29074449
PMC: 6768075.
DOI: 10.1016/j.resp.2017.10.005.
Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.
Baertsch N, Baker T
J Neurophysiol. 2017; 118(5):2702-2710.
PMID: 28814632
PMC: 5672539.
DOI: 10.1152/jn.00212.2017.
Premedication with fentanyl-midazolam improves sevoflurane anesthesia for surgical intervention in laboratory mice.
Lipiski M, Arras M, Jirkof P, Cesarovic N
Exp Biol Med (Maywood). 2017; 242(12):1287-1298.
PMID: 28474988
PMC: 5476341.
DOI: 10.1177/1535370217707730.
-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea.
Song G, Chi-Sang Poon
JCI Insight. 2017; 2(4):e91456.
PMID: 28239660
PMC: 5313063.
DOI: 10.1172/jci.insight.91456.
Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?.
Braegelmann K, Streeter K, Fields D, Baker T
Exp Neurol. 2016; 287(Pt 2):225-234.
PMID: 27456270
PMC: 5683174.
DOI: 10.1016/j.expneurol.2016.07.012.
Ampakine CX717 potentiates intermittent hypoxia-induced hypoglossal long-term facilitation.
Turner S, ElMallah M, Hoyt A, Greer J, Fuller D
J Neurophysiol. 2016; 116(3):1232-8.
PMID: 27306673
PMC: 5018053.
DOI: 10.1152/jn.00210.2016.
Power spectral analysis of hypoglossal nerve activity during intermittent hypoxia-induced long-term facilitation in mice.
Elmallah M, Stanley D, Lee K, Turner S, Streeter K, Baekey D
J Neurophysiol. 2015; 115(3):1372-80.
PMID: 26683067
PMC: 4808086.
DOI: 10.1152/jn.00479.2015.
Effect of Systemic Application of 5-Hydroxytryptamine on Hypoglossal Nerve Discharge in Anesthetized Rats.
Tu X, Zuo J, Hu K, Kang J, Mei Y, Wang N
J Mol Neurosci. 2015; 57(3):435-45.
PMID: 26076739
DOI: 10.1007/s12031-015-0590-x.
Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.
Devinney M, Fields D, Huxtable A, Peterson T, Dale E, Mitchell G
J Neurosci. 2015; 35(21):8107-17.
PMID: 26019328
PMC: 4444536.
DOI: 10.1523/JNEUROSCI.5086-14.2015.
Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.
Baertsch N, Baker-Herman T
Am J Physiol Regul Integr Comp Physiol. 2015; 308(8):R700-7.
PMID: 25673781
PMC: 4398856.
DOI: 10.1152/ajpregu.00359.2014.
Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.
Streeter K, Baker-Herman T
J Appl Physiol (1985). 2014; 117(7):682-93.
PMID: 25103979
PMC: 4187051.
DOI: 10.1152/japplphysiol.00342.2014.