» Articles » PMID: 21741465

Advances in Microfluidic PCR for Point-of-care Infectious Disease Diagnostics

Overview
Journal Biotechnol Adv
Date 2011 Jul 12
PMID 21741465
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics.

Citing Articles

Rapid and comprehensive detection of viral antibodies and nucleic acids via an acoustofluidic integrated molecular diagnostics chip: AIMDx.

Qian J, Xia J, Chiang S, Liu J, Li K, Li F Sci Adv. 2025; 11(3):eadt5464.

PMID: 39813350 PMC: 11734728. DOI: 10.1126/sciadv.adt5464.


Advancements of paper-based sensors for antibiotic-resistant bacterial species identification.

Laliwala A, Pant A, Svechkarev D, Sadykov M, Mohs A NPJ Biosens. 2024; 1(1):17.

PMID: 39678719 PMC: 11645268. DOI: 10.1038/s44328-024-00016-9.


Optimizing Microfluidic Channel Design with High-Performance Materials for Safe Neonatal Drug Delivery.

Archana T, Nachammai N, Praveenkumar S Recent Adv Drug Deliv Formul. 2024; 18(4):294-303.

PMID: 39356100 DOI: 10.2174/0126673878292962240718055526.


Biochemically Programmable Isothermal PCR.

Kim M, Ravisankar V, Hassan Y, Ugaz V Adv Sci (Weinh). 2024; 11(41):e2404688.

PMID: 39269276 PMC: 11538674. DOI: 10.1002/advs.202404688.


Mobile Diagnostic Clinics.

Baron R, Haick H ACS Sens. 2024; 9(6):2777-2792.

PMID: 38775426 PMC: 11217950. DOI: 10.1021/acssensors.4c00636.


References
1.
Kohanski M, Dwyer D, Collins J . How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010; 8(6):423-35. PMC: 2896384. DOI: 10.1038/nrmicro2333. View

2.
Beer N, Hindson B, Wheeler E, Hall S, Rose K, Kennedy I . On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem. 2007; 79(22):8471-5. DOI: 10.1021/ac701809w. View

3.
Easley C, Karlinsey J, Bienvenue J, Legendre L, Roper M, Feldman S . A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci U S A. 2006; 103(51):19272-7. PMC: 1748216. DOI: 10.1073/pnas.0604663103. View

4.
Hataoka Y, Zhang L, Mori Y, Tomita N, Notomi T, Baba Y . Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips. Anal Chem. 2004; 76(13):3689-93. DOI: 10.1021/ac035032u. View

5.
Issadore D, Humphry K, Brown K, Sandberg L, Weitz D, Westervelt R . Microwave dielectric heating of drops in microfluidic devices. Lab Chip. 2009; 9(12):1701-6. PMC: 2892413. DOI: 10.1039/b822357b. View