» Articles » PMID: 21704090

VLPs of Leptopilina Boulardi Share Biogenesis and Overall Stellate Morphology with VLPs of the Heterotoma Clade

Overview
Journal Virus Res
Specialty Microbiology
Date 2011 Jun 28
PMID 21704090
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Viruses and virus-like particles (VLPs) of insect parasitoids modify host-parasite interactions. The Drosophila wasp, Leptopilina heterotoma, produce 300 nm spiked VLPs that bind to the host's blood cells via surface projections. L. heterotoma is a generalist wasp that attacks over a dozen Drosophila species. Oviposition introduces VLPs into the hemolymph of Drosophila larvae. VLPs lyse hemocytes and obliterate immune signaling in infected larval hosts. L. boulardi, a member of a distinct Leptopilina clade, is a specialist, whose host range is limited to the melanogaster group. As a step toward understanding a potential relationship between venom contents and host range in these wasps, we used electron microscopy to characterize VLPs from the virulent L. boulardi-17 (Lb-17) strain. While the Lb-17 VLPs can neither lyse blood cells nor suppress host defense, their biogenesis is surprisingly similar to that of L. heterotoma. Like L. heterotoma VLPs, L. boulardi VLPs are stellate; but they have fewer spikes, each spike being significantly longer than the spikes in L. heterotoma VLPs. The Lb-17 VLPs possess a dimple, making them clearly distinct from L. heterotoma VLPs. We discuss the significance of these cross-clade differences in VLP morphologies in relation to their biological activities and the host range of the wasp.

Citing Articles

Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera.

Guinet B, Vogel J, Kacem Haddj El Mrabet N, Peters R, Hrcek J, Buffington M Proc Biol Sci. 2025; 292(2039):20242135.

PMID: 39837514 PMC: 11750357. DOI: 10.1098/rspb.2024.2135.


Defensive tactics: lessons from Drosophila.

Sadanandappa M, Ahmad S, Mohanraj R, Ratnaparkhi M, Sathyanarayana S Biol Open. 2024; 13(12).

PMID: 39718046 PMC: 11695572. DOI: 10.1242/bio.061609.


Transcriptomic Insights into Host Metabolism and Immunity Changes after Parasitization by .

Zhang J, Shan J, Shi W, Feng T, Sheng Y, Xu Z Insects. 2024; 15(5).

PMID: 38786908 PMC: 11122121. DOI: 10.3390/insects15050352.


parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoids.

Chou J, Ramroop J, Saravia-Butler A, Wey B, Lera M, Torres M iScience. 2024; 27(1):108759.

PMID: 38261932 PMC: 10797188. DOI: 10.1016/j.isci.2023.108759.


A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells.

Ramroop J, Heavner M, Razzak Z, Govind S PLoS Pathog. 2021; 17(5):e1009615.

PMID: 34048506 PMC: 8191917. DOI: 10.1371/journal.ppat.1009615.


References
1.
Morales J, Chiu H, Oo T, Plaza R, Hoskins S, Govind S . Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae. J Insect Physiol. 2005; 51(2):181-95. DOI: 10.1016/j.jinsphys.2004.11.002. View

2.
Dubuffet A, Colinet D, Anselme C, Dupas S, Carton Y, Poirie M . Variation of Leptopilina boulardi success in Drosophila hosts: what is inside the black box?. Adv Parasitol. 2009; 70:147-88. DOI: 10.1016/S0065-308X(09)70006-5. View

3.
Rizki R, Rizki T . Effects of lamellolysin from a parasitoid wasp on Drosophila blood cells in vitro. J Exp Zool. 1991; 257(2):236-44. DOI: 10.1002/jez.1402570214. View

4.
Russo J, Dupas S, Frey F, Carton Y, Brehelin M . Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology. 1996; 112 ( Pt 1):135-42. DOI: 10.1017/s0031182000065173. View

5.
Bezier A, Herbiniere J, Lanzrein B, Drezen J . Polydnavirus hidden face: the genes producing virus particles of parasitic wasps. J Invertebr Pathol. 2009; 101(3):194-203. DOI: 10.1016/j.jip.2009.04.006. View