» Articles » PMID: 21691330

The Role of Bioinformatics in Studying Rheumatic and Autoimmune Disorders

Overview
Specialty Rheumatology
Date 2011 Jun 22
PMID 21691330
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In the past decade, the availability and abundance of individual-level molecular data, such as gene expression, proteomics and sequence data, has enabled the use of integrative computational approaches to pose and answer novel questions about disease. In this article, we discuss several examples of applications of bioinformatics techniques to study autoimmune and rheumatic disorders. We focus our discussion on how integrative techniques can be applied to analyze gene expression and genetic variation data across different diseases, and discuss the implications of such analyses. We also outline current challenges and future directions of these approaches. We show that integrative computational methods are essential for translational research and provide a powerful opportunity to improve human health by refining the current knowledge about diagnostics, therapeutics and mechanisms of disease pathogenesis.

Citing Articles

A transcriptome atlas and interactive analysis platform for autoimmune disease.

Shen Z, Fang M, Sun W, Tang M, Liu N, Zhu L Database (Oxford). 2022; 2022.

PMID: 35758882 PMC: 9235372. DOI: 10.1093/database/baac050.


CD3D, GZMK, and KLRB1 Are Potential Markers for Early Diagnosis of Rheumatoid Arthritis, Especially in Anti-Citrullinated Protein Antibody-Negative Patients.

Lu J, Bi Y, Zhu Y, Huipeng S, Duan W, Zhou J Front Pharmacol. 2021; 12:726529.

PMID: 34603038 PMC: 8483717. DOI: 10.3389/fphar.2021.726529.


IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system.

Spitzer M, Gherardini P, Fragiadakis G, Bhattacharya N, Yuan R, Hotson A Science. 2015; 349(6244):1259425.

PMID: 26160952 PMC: 4537647. DOI: 10.1126/science.1259425.


Applications of systems approaches in the study of rheumatic diseases.

Kim K, Lee S, Kim W Korean J Intern Med. 2015; 30(2):148-60.

PMID: 25750554 PMC: 4351319. DOI: 10.3904/kjim.2015.30.2.148.

References
1.
Stahl E, Raychaudhuri S, Remmers E, Xie G, Eyre S, Thomson B . Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010; 42(6):508-14. PMC: 4243840. DOI: 10.1038/ng.582. View

2.
Germain R . Computational analysis of T cell receptor signaling and ligand discrimination--past, present, and future. FEBS Lett. 2010; 584(24):4814-22. PMC: 2998553. DOI: 10.1016/j.febslet.2010.10.027. View

3.
Hsu Y, Zillikens M, Wilson S, Farber C, Demissie S, Soranzo N . An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. PLoS Genet. 2010; 6(6):e1000977. PMC: 2883588. DOI: 10.1371/journal.pgen.1000977. View

4.
Ungethuem U, Haeupl T, Witt H, Koczan D, Krenn V, HUBER H . Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis. Physiol Genomics. 2010; 42A(4):267-82. DOI: 10.1152/physiolgenomics.00004.2010. View

5.
Raychaudhuri S, Thomson B, Remmers E, Eyre S, Hinks A, Guiducci C . Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet. 2009; 41(12):1313-8. PMC: 3142887. DOI: 10.1038/ng.479. View