» Articles » PMID: 21687575

Craniux: a LabVIEW-based Modular Software Framework for Brain-machine Interface Research

Overview
Specialty Biology
Date 2011 Jun 21
PMID 21687575
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

Citing Articles

Non-Invasive Brain-Computer Interfaces: State of the Art and Trends.

Edelman B, Zhang S, Schalk G, Brunner P, Muller-Putz G, Guan C IEEE Rev Biomed Eng. 2024; 18:26-49.

PMID: 39186407 PMC: 11861396. DOI: 10.1109/RBME.2024.3449790.


Analyzing Passive BCI Signals to Control Adaptive Automation Devices.

Al-Hudhud G, Alqahtani L, Albaity H, AlSaeed D, Al-Turaiki I Sensors (Basel). 2019; 19(14).

PMID: 31295908 PMC: 6678787. DOI: 10.3390/s19143042.


Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis.

Degenhart A, Hiremath S, Yang Y, Foldes S, Collinger J, Boninger M J Neural Eng. 2017; 15(2):026021.

PMID: 29160240 PMC: 5841472. DOI: 10.1088/1741-2552/aa9bfb.


Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate.

Degenhart A, Eles J, Dum R, Mischel J, Smalianchuk I, Endler B J Neural Eng. 2016; 13(4):046019.

PMID: 27351722 PMC: 4993459. DOI: 10.1088/1741-2560/13/4/046019.


MEG-based neurofeedback for hand rehabilitation.

Foldes S, Weber D, Collinger J J Neuroeng Rehabil. 2015; 12:85.

PMID: 26392353 PMC: 4578759. DOI: 10.1186/s12984-015-0076-7.


References
1.
Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N . An MEG-based brain-computer interface (BCI). Neuroimage. 2007; 36(3):581-93. PMC: 2017111. DOI: 10.1016/j.neuroimage.2007.03.019. View

2.
Hochberg L, Serruya M, Friehs G, Mukand J, Saleh M, Caplan A . Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442(7099):164-71. DOI: 10.1038/nature04970. View

3.
Wang W, Collinger J, Perez M, Tyler-Kabara E, Cohen L, Birbaumer N . Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am. 2009; 21(1):157-78. PMC: 2788507. DOI: 10.1016/j.pmr.2009.07.003. View

4.
Salinas E, Abbott L . Vector reconstruction from firing rates. J Comput Neurosci. 1994; 1(1-2):89-107. DOI: 10.1007/BF00962720. View

5.
Edwards E, Nagarajan S, Dalal S, Canolty R, Kirsch H, Barbaro N . Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage. 2009; 50(1):291-301. PMC: 2957470. DOI: 10.1016/j.neuroimage.2009.12.035. View