» Articles » PMID: 216663

Growth of the Photosynthetic Bacterium Rhodopseudomonas Capsulata Chemoautotrophically in Darkness with H2 As the Energy Source

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1979 Jan 1
PMID 216663
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness. Growth was strictly dependent on the presence of H2 as the source of energy and reducing power, O2 as the terminal electron acceptor for energy transduction, and CO2 as the sole carbon source; under optimal conditions the generation time was about 6 h. Chemoautotrophically grown cells showed a relatively high content of bacteriochlorophyll a and intracytoplasmic membranes (chromatophores). Experiments with various mutants of R. capsulata, affected in electron transport, indicate that either of the two terminal oxidases of this bacterium can participate in the energy-yielding oxidation of H2. The ability of R. capsulata to multiply in at least five different physiological growth modes suggests that it is one of the most metabolically versatile procaryotes known.

Citing Articles

Biofilm formation and cell plasticity drive diazotrophy in an anoxygenic phototrophic bacterium.

Fernandez-Juarez V, Hallstrom S, Pacherres C, Wang J, Coll-Garcia G, Kuhl M Appl Environ Microbiol. 2023; 89(11):e0102723.

PMID: 37882569 PMC: 10686084. DOI: 10.1128/aem.01027-23.


Rhodobacter capsulatus forms a compact crescent-shaped LH1-RC photocomplex.

Tani K, Kanno R, Ji X, Satoh I, Kobayashi Y, Hall M Nat Commun. 2023; 14(1):846.

PMID: 36792596 PMC: 9932092. DOI: 10.1038/s41467-023-36460-w.


Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels.

Alloul A, Spanoghe J, Machado D, Vlaeminck S Microb Biotechnol. 2021; 15(1):6-12.

PMID: 33529492 PMC: 8719805. DOI: 10.1111/1751-7915.13747.


Enrichment and Aggregation of Purple Non-sulfur Bacteria in a Mixed-Culture Sequencing-Batch Photobioreactor for Biological Nutrient Removal From Wastewater.

Cerruti M, Stevens B, Ebrahimi S, Alloul A, Vlaeminck S, Weissbrodt D Front Bioeng Biotechnol. 2021; 8:557234.

PMID: 33392158 PMC: 7773948. DOI: 10.3389/fbioe.2020.557234.


Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment.

Sakarika M, Spanoghe J, Sui Y, Wambacq E, Grunert O, Haesaert G Microb Biotechnol. 2019; 13(5):1336-1365.

PMID: 31432629 PMC: 7415370. DOI: 10.1111/1751-7915.13474.


References
1.
STANIER R, DOUDOROFF M, Kunisawa R, Contopoulou R . THE ROLE OF ORGANIC SUBSTRATES IN BACTERIAL PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1959; 45(8):1246-60. PMC: 222707. DOI: 10.1073/pnas.45.8.1246. View

2.
VAN NIEL C . THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944; 8(1):1-118. PMC: 440875. DOI: 10.1128/br.8.1.1-118.1944. View

3.
Law J, Slepecky R . Assay of poly-beta-hydroxybutyric acid. J Bacteriol. 1961; 82:33-6. PMC: 279110. DOI: 10.1128/jb.82.1.33-36.1961. View

4.
RYTER A, Kellenberger E, BIRCHANDERSEN A, MAALOE O . [Electron microscopic study on plasmas containing desoxyribonucleic acid. I. Nucleoids of actively growing bacteria]. Z Naturforsch B. 1958; 13B(9):597-605. View

5.
COHEN-BAZIRE G, SISTROM W, STANIER R . Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol. 1957; 49(1):25-68. DOI: 10.1002/jcp.1030490104. View