» Articles » PMID: 21645855

A Smoothed Backbone-dependent Rotamer Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions

Overview
Journal Structure
Publisher Cell Press
Date 2011 Jun 8
PMID 21645855
Citations 417
Authors
Affiliations
Soon will be listed here.
Abstract

Rotamer libraries are used in protein structure determination, prediction, and design. The backbone-dependent rotamer library consists of rotamer frequencies, mean dihedral angles, and variances as a function of the backbone dihedral angles. Structure prediction and design methods that employ backbone flexibility would strongly benefit from smoothly varying probabilities and angles. A new version of the backbone-dependent rotamer library has been developed using adaptive kernel density estimates for the rotamer frequencies and adaptive kernel regression for the mean dihedral angles and variances. This formulation allows for evaluation of the rotamer probabilities, mean angles, and variances as a smooth and continuous function of phi and psi. Continuous probability density estimates for the nonrotameric degrees of freedom of amides, carboxylates, and aromatic side chains have been modeled as a function of the backbone dihedrals and rotamers of the remaining degrees of freedom. New backbone-dependent rotamer libraries at varying levels of smoothing are available from http://dunbrack.fccc.edu.

Citing Articles

A Comparative Analysis of Cockroach and Mosquito, Octopamine Receptor Homologues Produced Using Chimera, Swiss-Model, and AlphaFold Molecular Modeling Tools.

Kamguia S, Njabon E, Patouossa I, Emadak A, Forlemu N ACS Omega. 2025; 10(8):7907-7919.

PMID: 40060804 PMC: 11886639. DOI: 10.1021/acsomega.4c08755.


Any1 is a phospholipid scramblase involved in endosome biogenesis.

Gao J, Franzkoch R, Rocha-Roa C, Psathaki O, Hensel M, Vanni S J Cell Biol. 2025; 224(4).

PMID: 40047640 PMC: 11893163. DOI: 10.1083/jcb.202410013.


Phosphorylation-State Modulated Binding of HSP70: Structural Insights and Compensatory Protein Engineering.

Stewart M, Paththamperuma C, McCann C, Cottingim K, Zhang H, DelVecchio R bioRxiv. 2025; .

PMID: 40027613 PMC: 11870554. DOI: 10.1101/2025.02.17.637997.


(Fr) Keissl Crude Extract Inhibits HIV Subtypes and Integrase Drug-Resistant Strains at Different Stages of HIV Replication.

Naidu D, Oduro-Kwateng E, Soliman M, Ndlovu S, Mkhwanazi N Pharmaceuticals (Basel). 2025; 18(2).

PMID: 40006004 PMC: 11859181. DOI: 10.3390/ph18020189.


Using AlphaFold2 to Predict the Conformations of Side Chains in Folded Proteins.

Maisuradze G, Thakur A, Khatri K, Haldane A, Levy R bioRxiv. 2025; .

PMID: 39990457 PMC: 11844428. DOI: 10.1101/2025.02.10.637534.


References
1.
Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J . Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins. 2009; 77 Suppl 9:114-22. PMC: 2922016. DOI: 10.1002/prot.22570. View

2.
Smith C, Kortemme T . Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol. 2008; 380(4):742-56. PMC: 2603262. DOI: 10.1016/j.jmb.2008.05.023. View

3.
Zhang C, Liu S, Zhou Y . Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential. Protein Sci. 2004; 13(2):391-9. PMC: 2286705. DOI: 10.1110/ps.03411904. View

4.
Amir E, Kalisman N, Keasar C . Differentiable, multi-dimensional, knowledge-based energy terms for torsion angle probabilities and propensities. Proteins. 2008; 72(1):62-73. DOI: 10.1002/prot.21896. View

5.
Canutescu A, Shelenkov A, Dunbrack Jr R . A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003; 12(9):2001-14. PMC: 2323997. DOI: 10.1110/ps.03154503. View