» Articles » PMID: 21640469

Glycosaminoglycans Promote Fibril Formation by Amyloidogenic Immunoglobulin Light Chains Through a Transient Interaction

Overview
Journal Biophys Chem
Specialty Biochemistry
Date 2011 Jun 7
PMID 21640469
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Amyloid formation occurs when a precursor protein misfolds and aggregates, forming a fibril nucleus that serves as a template for fibril growth. Glycosaminoglycans are highly charged polymers known to associate with tissue amyloid deposits that have been shown to accelerate amyloidogenesis in vitro. We studied two immunoglobulin light chain variable domains from light chain amyloidosis patients with 90% sequence identity, analyzing their fibril formation kinetics and binding properties with different glycosaminoglycan molecules. We find that the less amyloidogenic of the proteins shows a weak dependence on glycosaminoglycan size and charge, while the more amyloidogenic protein responds only minimally to changes in the glycosaminoglycan. These glycosaminoglycan effects on fibril formation do not depend on a stable interaction between the two species but still show characteristic traits of an interaction-dependent mechanism. We propose that transient, predominantly electrostatic interactions between glycosaminoglycans and the precursor proteins mediate the acceleration of fibril formation in vitro.

Citing Articles

Amylum forms typical self-assembled amyloid fibrils.

Chibh S, Singh A, Finkelstein-Zuta G, Koren G, Sorkin R, Beck R Sci Adv. 2024; 10(35):eadp6471.

PMID: 39213351 PMC: 11364109. DOI: 10.1126/sciadv.adp6471.


Molecular Mechanism of Pathogenesis and Treatment Strategies for AL Amyloidosis.

Ikura H, Endo J, Kitakata H, Moriyama H, Sano M, Fukuda K Int J Mol Sci. 2022; 23(11).

PMID: 35683015 PMC: 9181426. DOI: 10.3390/ijms23116336.


Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease.

Herrera G, Teng J, Turbat-Herrera E, Zeng C, Del Pozo-Yauner L Kidney Int Rep. 2020; 5(11):1870-1893.

PMID: 33163710 PMC: 7609979. DOI: 10.1016/j.ekir.2020.07.013.


Heparin-binding Peptides as Novel Therapies to Stop SARS-CoV-2 Cellular Entry and Infection.

Tavassoly O, Safavi F, Tavassoly I Mol Pharmacol. 2020; 98(5):612-619.

PMID: 32913137 PMC: 7610036. DOI: 10.1124/molpharm.120.000098.


Immunoglobulin light chain amyloid aggregation.

Blancas-Mejia L, Misra P, Dick C, Cooper S, Redhage K, Bergman M Chem Commun (Camb). 2018; 54(76):10664-10674.

PMID: 30087961 PMC: 6148388. DOI: 10.1039/c8cc04396e.


References
1.
Randles E, Thompson J, Martin D, Ramirez-Alvarado M . Structural alterations within native amyloidogenic immunoglobulin light chains. J Mol Biol. 2009; 389(1):199-210. PMC: 2840394. DOI: 10.1016/j.jmb.2009.04.010. View

2.
Bodner C, Maltsev A, Dobson C, Bax A . Differential phospholipid binding of alpha-synuclein variants implicated in Parkinson's disease revealed by solution NMR spectroscopy. Biochemistry. 2010; 49(5):862-71. PMC: 2815556. DOI: 10.1021/bi901723p. View

3.
Relini A, De Stefano S, Torrassa S, Cavalleri O, Rolandi R, Gliozzi A . Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen. J Biol Chem. 2007; 283(8):4912-20. DOI: 10.1074/jbc.M702712200. View

4.
Sikkink L, Ramirez-Alvarado M . Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophys Chem. 2008; 135(1-3):25-31. PMC: 2441971. DOI: 10.1016/j.bpc.2008.02.019. View

5.
Maji S, Perrin M, Sawaya M, Jessberger S, Vadodaria K, Rissman R . Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009; 325(5938):328-32. PMC: 2865899. DOI: 10.1126/science.1173155. View