» Articles » PMID: 21622646

Loss of P19Arf in a Rag1(-/-) B-cell Precursor Population Initiates Acute B-lymphoblastic Leukemia

Abstract

In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf(-/-)Rag1(-/-) mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1(+)CD19(+) precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34(+)CD19(+) population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans.

Citing Articles

Constitutive Ras signaling and inactivation cooperate during the development of B-ALL in mice.

Sewastianik T, Jiang M, Sukhdeo K, Patel S, Roberts K, Kang Y Blood Adv. 2018; 1(25):2361-2374.

PMID: 29296886 PMC: 5729631. DOI: 10.1182/bloodadvances.2017012211.


Activation-induced cytidine deaminase prevents pro-B cell acute lymphoblastic leukemia by functioning as a negative regulator in Rag1 deficient pro-B cells.

Auer F, Ingenhag D, Pinkert S, Kracker S, Hacein-Bey-Abina S, Cavazzana M Oncotarget. 2017; 8(44):75797-75807.

PMID: 29100269 PMC: 5652663. DOI: 10.18632/oncotarget.20563.


Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

Scheijen B, Boer J, Marke R, Tijchon E, van Ingen Schenau D, Waanders E Haematologica. 2016; 102(3):541-551.

PMID: 27979924 PMC: 5394950. DOI: 10.3324/haematol.2016.153023.


Genetically engineered mouse models of human B-cell precursor leukemias.

Hauer J, Borkhardt A, Sanchez-Garcia I, Cobaleda C Cell Cycle. 2014; 13(18):2836-46.

PMID: 25486471 PMC: 4613455. DOI: 10.4161/15384101.2014.949137.


Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011.

Olsson L, Castor A, Behrendtz M, Biloglav A, Forestier E, Paulsson K Leukemia. 2013; 28(2):302-10.

PMID: 23823658 DOI: 10.1038/leu.2013.206.


References
1.
Nepal R, Zaheen A, Basit W, Li L, Berger S, Martin A . AID and RAG1 do not contribute to lymphomagenesis in Emu c-myc transgenic mice. Oncogene. 2008; 27(34):4752-6. DOI: 10.1038/onc.2008.111. View

2.
le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A . In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008; 14(1):47-58. PMC: 2572185. DOI: 10.1016/j.ccr.2008.05.015. View

3.
Nacht M, Jacks T . V(D)J recombination is not required for the development of lymphoma in p53-deficient mice. Cell Growth Differ. 1998; 9(2):131-8. View

4.
Kannan S, Fang W, Song G, Mullighan C, Hammitt R, McMurray J . Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood. 2011; 117(10):2891-900. PMC: 3062299. DOI: 10.1182/blood-2009-12-253419. View

5.
Mullighan C, Phillips L, Su X, Ma J, Miller C, Shurtleff S . Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008; 322(5906):1377-80. PMC: 2746051. DOI: 10.1126/science.1164266. View