» Articles » PMID: 21568562

Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2011 May 17
PMID 21568562
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.

Citing Articles

WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.

Messenger D, Bortz D Multiscale Model Simul. 2024; 19(3):1474-1497.

PMID: 38239761 PMC: 10795802. DOI: 10.1137/20m1343166.


State estimation of a physical system with unknown governing equations.

Course K, Nair P Nature. 2023; 622(7982):261-267.

PMID: 37821594 PMC: 10567554. DOI: 10.1038/s41586-023-06574-8.


Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach.

Goyal P, Benner P Proc Math Phys Eng Sci. 2022; 478(2262):20210883.

PMID: 35756880 PMC: 9215218. DOI: 10.1098/rspa.2021.0883.


Data-driven prediction in dynamical systems: recent developments.

Ghadami A, Epureanu B Philos Trans A Math Phys Eng Sci. 2022; 380(2229):20210213.

PMID: 35719077 PMC: 9207538. DOI: 10.1098/rsta.2021.0213.


Sparsifying priors for Bayesian uncertainty quantification in model discovery.

Hirsh S, Barajas-Solano D, Kutz J R Soc Open Sci. 2022; 9(2):211823.

PMID: 35223066 PMC: 8864363. DOI: 10.1098/rsos.211823.


References
1.
Sauer T . Reconstruction of shared nonlinear dynamics in a network. Phys Rev Lett. 2004; 93(19):198701. DOI: 10.1103/PhysRevLett.93.198701. View

2.
Stoop R, Benner P, Uwate Y . Real-world existence and origins of the spiral organization of shrimp-shaped domains. Phys Rev Lett. 2010; 105(7):074102. DOI: 10.1103/PhysRevLett.105.074102. View

3.
Farmer , Sidorowich . Predicting chaotic time series. Phys Rev Lett. 1987; 59(8):845-848. DOI: 10.1103/PhysRevLett.59.845. View

4.
Bonatto C, Gallas J . Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. Phys Rev Lett. 2008; 101(5):054101. DOI: 10.1103/PhysRevLett.101.054101. View

5.
Stewart , Ueda , Grebogi , Yorke . Double crises in two-parameter dynamical systems. Phys Rev Lett. 1995; 75(13):2478-2481. DOI: 10.1103/PhysRevLett.75.2478. View