» Articles » PMID: 21549203

T2*-based Fiber Orientation Mapping

Overview
Journal Neuroimage
Specialty Radiology
Date 2011 May 10
PMID 21549203
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Recent MRI studies at high field have observed that, in certain white matter fiber bundles, the signal in T(2)*-weighted MRI (i.e. MRI sensitized to apparent transverse relaxivity) is dependent on fiber orientation θ relative to B(0). In this study, the characteristics of this dependency are quantitatively investigated at 7 T using ex-vivo brain specimens, which allowed a large range of rotation angles to be measured. The data confirm the previously suggested variation of R(2)* (=1/T(2)*) with θ and also indicate that this dependency takes the shape of a combination of sin2θ and sin4θ functions, with modulation amplitudes (=ΔR(2)*) reaching 6.44±0.15 Hz (or ΔT(2)*=2.91±0.33 ms) in the major fiber bundles of the corpus callosum. This particular dependency can be explained by a model of local, sub-voxel scale magnetic field changes resulting from magnetic susceptibility sources that are anisotropic. As an illustration of a potential use of the orientation dependence of R(2)*, the feasibility of generating fiber orientation maps from R(2)* data is investigated.

Citing Articles

χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation.

Kim M, Ji S, Kim J, Min K, Jeong H, Youn J Hum Brain Mapp. 2025; 46(2):e70136.

PMID: 39835664 PMC: 11748151. DOI: 10.1002/hbm.70136.


Mapping vascular network architecture in primate brain using ferumoxytol-weighted laminar MRI.

Autio J, Kimura I, Ose T, Matsumoto Y, Ohno M, Urushibata Y bioRxiv. 2024; .

PMID: 38798334 PMC: 11118324. DOI: 10.1101/2024.05.16.594068.


So You Want to Image Myelin Using MRI: Magnetic Susceptibility Source Separation for Myelin Imaging.

Lee J, Ji S, Oh S Magn Reson Med Sci. 2024; 23(3):291-306.

PMID: 38644201 PMC: 11234950. DOI: 10.2463/mrms.rev.2024-0001.


The impact of head orientation with respect to B on diffusion tensor MRI measures.

Kleban E, Jones D, Tax C Imaging Neurosci (Camb). 2024; 1:1-17.

PMID: 38405373 PMC: 10884544. DOI: 10.1162/imag_a_00012.


Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T magnetic field dependence.

Yablonskiy D, Sukstanskii A Magn Reson Med. 2024; 91(6):2597-2611.

PMID: 38241135 PMC: 10997466. DOI: 10.1002/mrm.29996.


References
1.
Cox E, Gowland P . Simultaneous quantification of T2 and T'2 using a combined gradient echo-spin echo sequence at ultrahigh field. Magn Reson Med. 2010; 64(5):1440-5. DOI: 10.1002/mrm.22522. View

2.
Weber B, Keller A, Reichold J, Logothetis N . The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb Cortex. 2008; 18(10):2318-30. DOI: 10.1093/cercor/bhm259. View

3.
Rubenstein J, Kim J, Stanchev P, Henkelman R . Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology. 1993; 188(1):219-26. DOI: 10.1148/radiology.188.1.8511302. View

4.
Henkelman R, Stanisz G, Kim J, Bronskill M . Anisotropy of NMR properties of tissues. Magn Reson Med. 1994; 32(5):592-601. DOI: 10.1002/mrm.1910320508. View

5.
Yablonskiy D, Haacke E . Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994; 32(6):749-63. DOI: 10.1002/mrm.1910320610. View