Liang J, Song Y, Zhao Y, Gao Y, Hou J, Yang G
Mikrochim Acta. 2023; 190(11):433.
PMID: 37814099
DOI: 10.1007/s00604-023-06011-7.
Liu M, Li J, Tan C
Biosensors (Basel). 2023; 13(6).
PMID: 37366963
PMC: 10296294.
DOI: 10.3390/bios13060598.
Hu W, Ye B, Yu G, Huang F, Mao Z, Ding Y
Molecules. 2023; 28(8).
PMID: 37110674
PMC: 10147063.
DOI: 10.3390/molecules28083441.
Liu Z, Li X, Masai H, Huang X, Tsuda S, Terao J
Sci Adv. 2021; 7(10).
PMID: 33658198
PMC: 7929498.
DOI: 10.1126/sciadv.abe4365.
Morikawa K, Kazoe Y, Takagi Y, Tsuyama Y, Pihosh Y, Tsukahara T
Micromachines (Basel). 2020; 11(11).
PMID: 33182488
PMC: 7697862.
DOI: 10.3390/mi11110995.
A highly selective and recyclable NO-responsive nanochannel based on a spiroring opening-closing reaction strategy.
Sun Y, Chen S, Chen X, Xu Y, Zhang S, Ouyang Q
Nat Commun. 2019; 10(1):1323.
PMID: 30899007
PMC: 6428850.
DOI: 10.1038/s41467-019-09163-4.
Fluoride responsive single nanochannel: click fabrication and highly selective sensing in aqueous solution.
Nie G, Sun Y, Zhang F, Song M, Tian D, Jiang L
Chem Sci. 2018; 6(10):5859-5865.
PMID: 29861911
PMC: 5950555.
DOI: 10.1039/c5sc02191j.
Discrimination of supramolecular chirality using a protein nanopore.
Cooper J, Borsley S, Lusby P, Cockroft S
Chem Sci. 2017; 8(7):5005-5009.
PMID: 28970887
PMC: 5612056.
DOI: 10.1039/c7sc01940h.
A light-regulated host-guest-based nanochannel system inspired by channelrhodopsins protein.
Sun Y, Ma J, Zhang F, Zhu F, Mei Y, Liu L
Nat Commun. 2017; 8(1):260.
PMID: 28811463
PMC: 5558008.
DOI: 10.1038/s41467-017-00330-z.
Simple and Versatile Detection of Viruses Using Anodized Alumina Membranes.
Chaturvedi P, Rodriguez S, Vlassiouk I, Hansen I, Smirnov S
ACS Sens. 2017; 1(5):488-492.
PMID: 28529972
PMC: 5434760.
DOI: 10.1021/acssensors.6b00003.
Nanopore-based analysis of biochemical species.
Liu N, Yang Z, Ou X, Wei B, Zhang J, Jia Y
Mikrochim Acta. 2016; 183:955-963.
PMID: 27013767
PMC: 4778144.
DOI: 10.1007/s00604-015-1560-2.
Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing.
Crick C, Sze J, Rosillo-Lopez M, Salzmann C, Edel J
ACS Appl Mater Interfaces. 2015; 7(32):18188-94.
PMID: 26204996
PMC: 4543996.
DOI: 10.1021/acsami.5b06212.
Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets.
Haywood D, Saha-Shah A, Baker L, Jacobson S
Anal Chem. 2014; 87(1):172-87.
PMID: 25405581
PMC: 4287834.
DOI: 10.1021/ac504180h.
Binomial distribution for quantification of protein subunits in biological nanoassemblies and functional nanomachines.
Fang H, Zhang P, Huang L, Zhao Z, Pi F, Montemagno C
Nanomedicine. 2014; 10(7):1433-40.
PMID: 24650885
PMC: 4192058.
DOI: 10.1016/j.nano.2014.03.005.
Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA.
Haque F, Li J, Wu H, Liang X, Guo P
Nano Today. 2013; 8(1):56-74.
PMID: 23504223
PMC: 3596169.
DOI: 10.1016/j.nantod.2012.12.008.
Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA.
Haque F, Geng J, Montemagno C, Guo P
Nat Protoc. 2013; 8(2):373-92.
PMID: 23348364
PMC: 3866906.
DOI: 10.1038/nprot.2013.001.
Stochastic sensing of proteins with receptor-modified solid-state nanopores.
Wei R, Gatterdam V, Wieneke R, Tampe R, Rant U
Nat Nanotechnol. 2012; 7(4):257-63.
PMID: 22406921
DOI: 10.1038/nnano.2012.24.