» Articles » PMID: 21511873

Crystal Structure of the Mre11-Rad50-ATPγS Complex: Understanding the Interplay Between Mre11 and Rad50

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2011 Apr 23
PMID 21511873
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

Communication between Mre11 and Rad50 in the MR complex is critical for the sensing, damage signaling, and repair of DNA double-strand breaks. To understand the basis for interregulation between Mre11 and Rad50, we determined the crystal structure of the Mre11-Rad50-ATPγS complex. Mre11 brings the two Rad50 molecules into close proximity and promotes ATPase activity by (1) holding the coiled-coil arm of Rad50 through its C-terminal domain, (2) stabilizing the signature motif and P loop of Rad50 via its capping domain, and (3) forming a dimer through the nuclease domain. ATP-bound Rad50 negatively regulates the nuclease activity of Mre11 by blocking the active site of Mre11. Hydrolysis of ATP disengages Rad50 molecules, and, concomitantly, the flexible linker that connects the C-terminal domain and the capping domain of Mre11 undergoes substantial conformational change to relocate Rad50 and unmask the active site of Mre11. Our structural and biochemical data provide insights into understanding the interplay between Mre11 and Rad50 to facilitate efficient DNA damage repair.

Citing Articles

Structure guided functional analysis of the S. cerevisiae Mre11 complex.

Petrini J, Hohl M, Yu Y, Kuryavyi V, Patel D Res Sq. 2024; .

PMID: 39711558 PMC: 11661359. DOI: 10.21203/rs.3.rs-5390974/v1.


Functional and molecular insights into the role of Sae2 C-terminus in the activation of MRX endonuclease.

Colombo C, Casari E, Gnugnoli M, Corallo F, Tisi R, Longhese M Nucleic Acids Res. 2024; 52(22):13849-13864.

PMID: 39558159 PMC: 11662671. DOI: 10.1093/nar/gkae1049.


SPO-Seq: An Accessible Method for Efficient Evaluation of Spo11 Catalytic Activity and Profiling Meiotic DSB Hotspots in Saccharomyces cerevisiae.

Hernandez I, Alvarez-Melo D, Garcia de Lacoba M, Carballo J Methods Mol Biol. 2024; 2818:23-43.

PMID: 39126465 DOI: 10.1007/978-1-0716-3906-1_2.


Rif2 interaction with Rad50 counteracts Tel1 functions in checkpoint signalling and DNA tethering by releasing Tel1 from MRX binding.

Pizzul P, Casari E, Rinaldi C, Gnugnoli M, Mangiagalli M, Tisi R Nucleic Acids Res. 2024; 52(5):2355-2371.

PMID: 38180815 PMC: 10954470. DOI: 10.1093/nar/gkad1246.


Dynamic Properties of the DNA Damage Response Mre11/Rad50 Complex.

Vertemara J, Tisi R Int J Mol Sci. 2023; 24(15).

PMID: 37569756 PMC: 10418313. DOI: 10.3390/ijms241512377.


References
1.
Luo G, Yao M, Bender C, Mills M, Bladl A, Bradley A . Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci U S A. 1999; 96(13):7376-81. PMC: 22093. DOI: 10.1073/pnas.96.13.7376. View

2.
Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel A . Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep. 2002; 3(3):248-54. PMC: 1084012. DOI: 10.1093/embo-reports/kvf044. View

3.
Ghosal G, Muniyappa K . The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J Mol Biol. 2007; 372(4):864-882. DOI: 10.1016/j.jmb.2007.07.013. View

4.
Brunger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R . Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54(Pt 5):905-21. DOI: 10.1107/s0907444998003254. View

5.
Lammens A, Schele A, Hopfner K . Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr Biol. 2004; 14(19):1778-82. DOI: 10.1016/j.cub.2004.09.044. View