» Articles » PMID: 21451040

A Parallel Functional Topography Between Medial and Lateral Prefrontal Cortex: Evidence and Implications for Cognitive Control

Overview
Journal J Neurosci
Specialty Neurology
Date 2011 Apr 1
PMID 21451040
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

The dorsomedial and dorsolateral prefrontal cortices (dmPFC and dlPFC) together support cognitive control, with dmPFC responsible for monitoring performance and dlPFC responsible for adjusting behavior. The dlPFC contains a topographic organization that reflects complexity of control demands, with more anterior regions guiding increasingly abstract processing. Recent evidence for a similar gradient within dmPFC suggests the possibility of parallel, hierarchical organization. Here, we measured connectivity between functional nodes of dmPFC and dlPFC using resting-state functional magnetic resonance imaging in humans. We found a posterior-to-anterior connectivity gradient; posterior dmPFC maximally connected to posterior dlPFC and anterior dmPFC maximally connected to anterior dlPFC. This parallel topographic pattern replicated across three independent datasets collected on different scanners, within individual participants, and through both point-to-point and voxelwise analyses. We posit a model of cognitive control characterized by hierarchical interactions--whose level depends on current environmental demands--between functional subdivisions of medial and lateral PFC.

Citing Articles

Dependence of Cerebral Oxygenation and Task Performance on Coloured Light Exposure and Chronotype: Blue and Red Do Not Have the Same Effects on the Prefrontal Cortex.

Zohdi H, Ackermann D, Scholkmann F, Wolf U Adv Exp Med Biol. 2024; 1463:67-72.

PMID: 39400802 DOI: 10.1007/978-3-031-67458-7_12.


Belief inference for hierarchical hidden states in spatial navigation.

Katayama R, Shiraki R, Ishii S, Yoshida W Commun Biol. 2024; 7(1):614.

PMID: 38773301 PMC: 11109253. DOI: 10.1038/s42003-024-06316-0.


Distinct neural mechanisms for action access and execution in the human brain: insights from an fMRI study.

Papitto G, Friederici A, Zaccarella E Cereb Cortex. 2024; 34(4).

PMID: 38629799 PMC: 11022341. DOI: 10.1093/cercor/bhae163.


Orthogonal neural encoding of targets and distractors supports multivariate cognitive control.

Ritz H, Shenhav A Nat Hum Behav. 2024; 8(5):945-961.

PMID: 38459265 PMC: 11219097. DOI: 10.1038/s41562-024-01826-7.


Unraveling neural pathways of political engagement: bridging neuromarketing and political science for understanding voter behavior and political leader perception.

Cakar T, Filiz G Front Hum Neurosci. 2024; 17:1293173.

PMID: 38188505 PMC: 10771297. DOI: 10.3389/fnhum.2023.1293173.


References
1.
Ridderinkhof K, Ullsperger M, Crone E, Nieuwenhuis S . The role of the medial frontal cortex in cognitive control. Science. 2004; 306(5695):443-7. DOI: 10.1126/science.1100301. View

2.
Margulies D, Kelly A, Uddin L, Biswal B, Castellanos F, Milham M . Mapping the functional connectivity of anterior cingulate cortex. Neuroimage. 2007; 37(2):579-88. DOI: 10.1016/j.neuroimage.2007.05.019. View

3.
Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J . The role of the anterior prefrontal cortex in human cognition. Nature. 1999; 399(6732):148-51. DOI: 10.1038/20178. View

4.
Egner T . Prefrontal cortex and cognitive control: motivating functional hierarchies. Nat Neurosci. 2009; 12(7):821-2. DOI: 10.1038/nn0709-821. View

5.
Kennerley S, Walton M, Behrens T, Buckley M, Rushworth M . Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006; 9(7):940-7. DOI: 10.1038/nn1724. View