» Articles » PMID: 21448925

Regulation of Reactive Oxygen Species in Stem Cells and Cancer Stem Cells

Overview
Journal J Cell Physiol
Specialties Cell Biology
Physiology
Date 2011 Mar 31
PMID 21448925
Citations 127
Authors
Affiliations
Soon will be listed here.
Abstract

Stem cells are defined by their ability to self-renew and their multi-potent differentiation capacity. As such, stem cells maintain tissue homeostasis throughout the life of a multicellular organism. Aerobic metabolism, while enabling efficient energy production, also generates reactive oxygen species (ROS), which damage cellular components. Until recently, the focus in stem cell biology has been on the adverse effects of ROS, particularly the damaging effects of ROS accumulation on tissue aging and the development of cancer, and various anti-oxidative and anti-stress mechanisms of stem cells have been characterized. However, it has become increasingly clear that, in some cases, redox status plays an important role in stem cell maintenance, i.e., regulation of the cell cycle. An active area of current research is redox regulation in various cancer stem cells, the malignant counterparts of normal stem cells that are viewed as good targets of cancer therapy. In contrast to cancer cells, in which ROS levels are increased, some cancer stem cells maintain low ROS levels, exhibiting redox patterns that are similar to the corresponding normal stem cell. To fully elucidate the mechanisms involved in stem cell maintenance and to effectively target cancer stem cells, it is essential to understand ROS regulatory mechanisms in these different cell types. Here, the mechanisms of redox regulation in normal stem cells, cancer cells, and cancer stem cells are reviewed.

Citing Articles

Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: Lessons for busy clinicians.

Sengupta P, Pinggera G, Calogero A, Agarwal A Reprod Med Biol. 2024; 23(1):e12598.

PMID: 39224210 PMC: 11366688. DOI: 10.1002/rmb2.12598.


Epidermal stem cells: skin surveillance and clinical perspective.

Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H J Transl Med. 2024; 22(1):779.

PMID: 39169334 PMC: 11340167. DOI: 10.1186/s12967-024-05600-1.


Venetoclax Combined with Intensive Chemotherapy: A New Hope for Refractory and/or Relapsed Acute Myeloid Leukemia?.

Rahme R, Braun T J Clin Med. 2024; 13(2).

PMID: 38256681 PMC: 10816428. DOI: 10.3390/jcm13020549.


Regulation of hematopoietic stem cells differentiation, self-renewal, and quiescence through the mTOR signaling pathway.

Ling B, Xu Y, Qian S, Xiang Z, Xuan S, Wu J Front Cell Dev Biol. 2023; 11:1186850.

PMID: 37228652 PMC: 10203478. DOI: 10.3389/fcell.2023.1186850.


Anoxia Rapidly Induces Changes in Expression of a Large and Diverse Set of Genes in Endothelial Cells.

Antonelli A, Scarpa E, Bruzzone S, Astigiano C, Piacente F, Bruschi M Int J Mol Sci. 2023; 24(6).

PMID: 36982232 PMC: 10049254. DOI: 10.3390/ijms24065157.