» Articles » PMID: 21421558

Characterization of Plastid PsbT Sense and Antisense RNAs

Overview
Specialty Biochemistry
Date 2011 Mar 23
PMID 21421558
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The plastid psbB operon is composed of the psbB, psbT, psbH, petB and petD genes. The psbN gene is located in the intergenic region between psbT and psbH on the opposite DNA strand. Transcription of psbN is under control of sigma factor 3 (SIG3) and psbN read-through transcription produces antisense RNA to psbT mRNA. To investigate on the question of whether psbT gene expression might be regulated by antisense RNA, we have characterized psbT sense and antisense RNAs. Mapping of 5' and 3'-ends by circular RT-PCR and /or 5'-RACE experiments reveal the existence of two different sense and antisense RNAs each, one limited to psbT RNA and a larger one that covers, in addition, part of the psbB coding region. Sense and antisense RNAs seem to form double-stranded RNA/RNA hybrids as indicated by nuclease digestion experiments followed by RT-PCR amplification to reveal nuclease resistant RNA. Western immunoblotting using antibodies made against PSBT protein and primer extension analysis of different plastid mRNA species and psbT antisense RNA suggest that sequestering of psbT mRNA by hybrid formation results in translational inactivation of the psbT mRNA and provides protection against nucleolytic degradation of mRNA during photooxydative stress conditions.

Citing Articles

Chloroplast gene expression: Recent advances and perspectives.

Zhang Y, Tian L, Lu C Plant Commun. 2023; 4(5):100611.

PMID: 37147800 PMC: 10504595. DOI: 10.1016/j.xplc.2023.100611.


Transgene insertion into the plastid genome alters expression of adjacent native chloroplast genes at the transcriptional and translational levels.

Ghandour R, Gao Y, Laskowski J, Barahimipour R, Ruf S, Bock R Plant Biotechnol J. 2022; 21(4):711-725.

PMID: 36529916 PMC: 10037153. DOI: 10.1111/pbi.13985.


A photosynthesis operon in the chloroplast genome drives speciation in evening primroses.

Zupok A, Kozul D, Schottler M, Niehorster J, Garbsch F, Liere K Plant Cell. 2021; 33(8):2583-2601.

PMID: 34048579 PMC: 8408503. DOI: 10.1093/plcell/koab155.


Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions.

Anand A, Pandi G Life (Basel). 2021; 11(1).

PMID: 33450961 PMC: 7828403. DOI: 10.3390/life11010049.


Variation in plastid genomes in the gynodioecious species Silene vulgaris.

Kruger M, Abeyawardana O, Juricek M, Kruger C, Storchova H BMC Plant Biol. 2019; 19(1):568.

PMID: 31856730 PMC: 6921581. DOI: 10.1186/s12870-019-2193-0.


References
1.
Marker C, Zemann A, Terhorst T, Kiefmann M, Kastenmayer J, Green P . Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol. 2002; 12(23):2002-13. DOI: 10.1016/s0960-9822(02)01304-0. View

2.
Lysenko E . Plant sigma factors and their role in plastid transcription. Plant Cell Rep. 2007; 26(7):845-59. DOI: 10.1007/s00299-007-0318-7. View

3.
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W . Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009; 16(3):334-42. DOI: 10.1038/nsmb.1559. View

4.
Werner A, Swan D . What are natural antisense transcripts good for?. Biochem Soc Trans. 2010; 38(4):1144-9. PMC: 4284956. DOI: 10.1042/BST0381144. View

5.
Westhoff P, Herrmann R . Complex RNA maturation in chloroplasts. The psbB operon from spinach. Eur J Biochem. 1988; 171(3):551-64. DOI: 10.1111/j.1432-1033.1988.tb13824.x. View