» Articles » PMID: 21418557

Development of Melanopsin-based Irradiance Detecting Circuitry

Overview
Journal Neural Dev
Publisher Biomed Central
Specialty Neurology
Date 2011 Mar 23
PMID 21418557
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Most retinal ganglion cells (RGCs) convey contrast and motion information to visual brain centers. Approximately 2% of RGCs are intrinsically photosensitive (ipRGCs), express melanopsin and are necessary for light to modulate specific physiological processes in mice. The ipRGCs directly target the suprachiasmatic nucleus (SCN) to photoentrain circadian rhythms, and the olivary pretectal nucleus (OPN) to mediate the pupillary light response. How and when this ipRGC circuitry develops is unknown.

Results: Here, we show that some ipRGCs follow a delayed developmental time course relative to other image-forming RGCs. Specifically, ipRGC neurogenesis extends beyond that of other RGCs, and ipRGCs begin innervating the SCN at postnatal ages, unlike most RGCs, which innervate their image-forming targets embryonically. Moreover, the appearance of ipRGC axons in the OPN coincides precisely with the onset of the pupillary light response.

Conclusions: Some ipRGCs differ not only functionally but also developmentally from RGCs that mediate pattern-forming vision.

Citing Articles

Proper Frequency of Perinatal Retinal Waves Is Essential for the Precise Wiring of Visual Axons in Nonimage-Forming Nuclei.

Negueruela S, Morenilla-Palao C, Sala S, Ordono P, Herrera M, Coca Y J Neurosci. 2024; 44(40).

PMID: 39151955 PMC: 11450533. DOI: 10.1523/JNEUROSCI.1408-23.2024.


Role of glutamate in the development of visual pathways.

Majumdar S Front Ophthalmol (Lausanne). 2024; 3:1147769.

PMID: 38983097 PMC: 11182277. DOI: 10.3389/fopht.2023.1147769.


Flp-recombinase mouse line for genetic manipulation of ipRGCs.

Contreras E, Liang C, Mahoney H, Javier J, Luce M, Labastida Medina K bioRxiv. 2024; .

PMID: 38766000 PMC: 11100754. DOI: 10.1101/2024.05.06.592761.


Microanalytical Mass Spectrometry with Super-Resolution Microscopy Reveals a Proteome Transition During Development of the Brain's Circadian Pacemaker.

Choi S, Vatan T, Alexander T, Zhang C, Mitchell S, Speer C Anal Chem. 2023; 95(41):15208-15216.

PMID: 37792996 PMC: 10728713. DOI: 10.1021/acs.analchem.3c01987.


Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging.

Chen R, Routh B, Gaudet A, Fonken L J Biol Rhythms. 2023; 38(5):419-446.

PMID: 37357738 PMC: 10475217. DOI: 10.1177/07487304231178950.


References
1.
Prichard J, Stoffel R, Quimby D, Obermeyer W, Benca R, Behan M . Fos immunoreactivity in rat subcortical visual shell in response to illuminance changes. Neuroscience. 2002; 114(3):781-93. DOI: 10.1016/s0306-4522(02)00293-2. View

2.
Hatori M, Le H, Vollmers C, Keding S, Tanaka N, Buch T . Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One. 2008; 3(6):e2451. PMC: 2396502. DOI: 10.1371/journal.pone.0002451. View

3.
Guler A, Ecker J, Lall G, Haq S, Altimus C, Liao H . Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008; 453(7191):102-5. PMC: 2871301. DOI: 10.1038/nature06829. View

4.
Takada Y, Fariss R, Tanikawa A, Zeng Y, Carper D, Bush R . A retinal neuronal developmental wave of retinoschisin expression begins in ganglion cells during layer formation. Invest Ophthalmol Vis Sci. 2004; 45(9):3302-12. DOI: 10.1167/iovs.04-0156. View

5.
Goz D, Studholme K, Lappi D, Rollag M, Provencio I, Morin L . Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS One. 2008; 3(9):e3153. PMC: 2519834. DOI: 10.1371/journal.pone.0003153. View