» Articles » PMID: 21410983

Confab - Systematic Generation of Diverse Low-energy Conformers

Overview
Journal J Cheminform
Publisher Biomed Central
Specialty Chemistry
Date 2011 Mar 18
PMID 21410983
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion.

Results: Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD) relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol.

Conclusions: Confab is available from http://confab.googlecode.com.

Citing Articles

PUR-GEN: A web server for automated generation of polyurethane fragment libraries.

Szleper K, Cebula M, Kovalenko O, Gora A, Raczynska A Comput Struct Biotechnol J. 2025; 27():127-136.

PMID: 39845943 PMC: 11750484. DOI: 10.1016/j.csbj.2024.12.004.


Automated and Efficient Sampling of Chemical Reaction Space.

Lee M, Ucak U, Jeong J, Ashyrmamatov I, Lee J, Sim E Adv Sci (Weinh). 2025; 12(9):e2409009.

PMID: 39804946 PMC: 11884589. DOI: 10.1002/advs.202409009.


GADIFF: a transferable graph attention diffusion model for generating molecular conformations.

Wang D, Dong X, Zhang X, Hu L Brief Bioinform. 2024; 26(1).

PMID: 39737569 PMC: 11684900. DOI: 10.1093/bib/bbae676.


Overcoming the Pitfalls of Computing Reaction Selectivity from Ensembles of Transition States.

Laplaza R, Wodrich M, Corminboeuf C J Phys Chem Lett. 2024; 15(29):7363-7370.

PMID: 38990895 PMC: 11284845. DOI: 10.1021/acs.jpclett.4c01657.


Emerging Conformational-Analysis Protocols from the RTCONF55-16K Reaction Thermochemistry Conformational Benchmark Set.

Meszaros B, Kubicsko K, Nemeth D, Daru J J Chem Theory Comput. 2024; 20(17):7385-7392.

PMID: 38899777 PMC: 11498139. DOI: 10.1021/acs.jctc.4c00565.


References
1.
Sperandio O, Souaille M, Delfaud F, Miteva M, Villoutreix B . MED-3DMC: a new tool to generate 3D conformation ensembles of small molecules with a Monte Carlo sampling of the conformational space. Eur J Med Chem. 2008; 44(4):1405-9. DOI: 10.1016/j.ejmech.2008.09.052. View

2.
Sauton N, Lagorce D, Villoutreix B, Miteva M . MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics. 2008; 9:184. PMC: 2373571. DOI: 10.1186/1471-2105-9-184. View

3.
OBoyle N, Morley C, Hutchison G . Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J. 2008; 2:5. PMC: 2270842. DOI: 10.1186/1752-153X-2-5. View

4.
Miteva M, Guyon F, Tuffery P . Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res. 2010; 38(Web Server issue):W622-7. PMC: 2896087. DOI: 10.1093/nar/gkq325. View

5.
OBoyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G . Open Babel: An open chemical toolbox. J Cheminform. 2011; 3:33. PMC: 3198950. DOI: 10.1186/1758-2946-3-33. View