» Articles » PMID: 21407243

Mucin Dynamics and Enteric Pathogens

Overview
Date 2011 Mar 17
PMID 21407243
Citations 614
Authors
Affiliations
Soon will be listed here.
Abstract

The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.

Citing Articles

Innovative microfluidic model for investigating the intestinal mucus barrier: numerical and experimental perspectives.

Valibeknejad M, Alizadeh R, Abdoli S, Quodbach J, Heidari F, Mihaila S Drug Deliv Transl Res. 2025; .

PMID: 40048144 DOI: 10.1007/s13346-025-01818-8.


Photo-regulated disulfide crosslinking: a versatile approach to construct mucus-inspired hydrogels.

Chen R, Das K, Feng J, Thongrom B, Haag R Chem Sci. 2025; .

PMID: 40012688 PMC: 11851172. DOI: 10.1039/d4sc08284b.


Alterations in mucosa branched -glycans lead to dysbiosis and downregulation of ILC3: a key driver of intestinal inflammation.

Rodrigues C, Gaifem J, Pereira M, Alves M, Silva M, Padrao N Gut Microbes. 2025; 17(1):2461210.

PMID: 39918275 PMC: 11810091. DOI: 10.1080/19490976.2025.2461210.


Mechanistic study of the effect of a high-salt diet on the intestinal barrier.

Chen L, Tang J, Xia Y, Wang J, Xia L Sci Rep. 2025; 15(1):3826.

PMID: 39885261 PMC: 11782509. DOI: 10.1038/s41598-025-88291-y.


Lignin-Based Mucus-Mimicking Antiviral Hydrogels with Enzyme Stability and Tunable Porosity.

Chandna S, Povolotsky T, Nie C, Schwartz S, Wedepohl S, Quaas E ACS Appl Mater Interfaces. 2025; 17(6):8962-8975.

PMID: 39876589 PMC: 11826508. DOI: 10.1021/acsami.4c18519.


References
1.
Guang W, Ding H, Czinn S, Kim K, Blanchard T, Lillehoj E . Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J Biol Chem. 2010; 285(27):20547-57. PMC: 2898360. DOI: 10.1074/jbc.M110.121319. View

2.
Thim L, Madsen F, Poulsen S . Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest. 2002; 32(7):519-27. DOI: 10.1046/j.1365-2362.2002.01014.x. View

3.
Stappenbeck T . Paneth cell development, differentiation, and function: new molecular cues. Gastroenterology. 2009; 137(1):30-3. DOI: 10.1053/j.gastro.2009.05.013. View

4.
Thornton D, Rousseau K, McGuckin M . Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2007; 70:459-86. DOI: 10.1146/annurev.physiol.70.113006.100702. View

5.
Klinkspoor J, Mok K, Van Klinken B, Tytgat G, Lee S, Groen A . Mucin secretion by the human colon cell line LS174T is regulated by bile salts. Glycobiology. 1999; 9(1):13-9. DOI: 10.1093/glycob/9.1.13. View