» Articles » PMID: 21400047

Stochastic Thermodynamics of Single Enzymes and Molecular Motors

Overview
Publisher EDP Sciences
Specialty Biophysics
Date 2011 Mar 15
PMID 21400047
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

For a single enzyme or molecular motor operating in an aqueous solution of non-equilibrated solute concentrations, a thermodynamic description is developed on the level of an individual trajectory of transitions between states. The concept of internal energy, intrinsic entropy and free energy for states follows from a microscopic description using one assumption on time scale separation. A first-law energy balance then allows the unique identification of the heat dissipated in one transition. Consistency with the second law on the ensemble level enforces both stochastic entropy as third contribution to the entropy change involved in one transition and the local detailed balance condition for the ratio between forward and backward rates for any transition. These results follow without assuming weak coupling between the enzyme and the solutes, ideal solution behavior or mass action law kinetics. The present approach highlights both the crucial role of the intrinsic entropy of each state and the physically questionable role of chemiostats for deriving the first law for molecular motors subject to an external force under realistic conditions.

Citing Articles

Active fluctuations of axoneme oscillations scale with number of dynein motors.

Sharma A, Friedrich B, Geyer V Proc Natl Acad Sci U S A. 2024; 121(46):e2406244121.

PMID: 39499635 PMC: 11573680. DOI: 10.1073/pnas.2406244121.


The Hill function is the universal Hopfield barrier for sharpness of input-output responses.

Martinez-Corral R, Nam K, DePace A, Gunawardena J Proc Natl Acad Sci U S A. 2024; 121(22):e2318329121.

PMID: 38787881 PMC: 11145184. DOI: 10.1073/pnas.2318329121.


Harnessing Information Thermodynamics: Conversion of DNA Information into Mechanical Work in RNA Transcription and Nanopore Sequencing.

Tsuruyama T Entropy (Basel). 2024; 26(4).

PMID: 38667878 PMC: 11049638. DOI: 10.3390/e26040324.


The Hill function is the universal Hopfield barrier for sharpness of input-output responses.

Martinez-Corral R, Nam K, DePace A, Gunawardena J bioRxiv. 2024; .

PMID: 38585761 PMC: 10996692. DOI: 10.1101/2024.03.27.587054.


Thermodynamic bounds on ultrasensitivity in covalent switching.

Owen J, Talla P, Biddle J, Gunawardena J Biophys J. 2023; 122(10):1833-1845.

PMID: 37081788 PMC: 10209043. DOI: 10.1016/j.bpj.2023.04.015.


References
1.
Svoboda K, Schmidt C, Schnapp B, Block S . Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993; 365(6448):721-7. DOI: 10.1038/365721a0. View

2.
Seifert U . Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys Rev Lett. 2005; 95(4):040602. DOI: 10.1103/PhysRevLett.95.040602. View

3.
Ritort F . Single-molecule experiments in biological physics: methods and applications. J Phys Condens Matter. 2011; 18(32):R531-83. DOI: 10.1088/0953-8984/18/32/R01. View

4.
Trepagnier E, Jarzynski C, Ritort F, Crooks G, Bustamante C, Liphardt J . Experimental test of Hatano and Sasa's nonequilibrium steady-state equality. Proc Natl Acad Sci U S A. 2004; 101(42):15038-41. PMC: 524055. DOI: 10.1073/pnas.0406405101. View

5.
Min W, Jiang L, Yu J, Kou S, Qian H, Xie X . Nonequilibrium steady state of a nanometric biochemical system: determining the thermodynamic driving force from single enzyme turnover time traces. Nano Lett. 2005; 5(12):2373-8. DOI: 10.1021/nl0521773. View