» Articles » PMID: 21372819

Dynamic Clamp with StdpC Software

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2011 Mar 5
PMID 21372819
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, for spike timing-dependent plasticity clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real-time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments through an intuitive and powerful interface with a minimal initial lead time of a few hours. After initial configuration, experimental results can be generated within minutes of establishing cell recording.

Citing Articles

Functional mapping of the molluscan brain guided by synchrotron X-ray tomography.

Crossley M, Simon A, Marathe S, Rau C, Roth A, Marra V Proc Natl Acad Sci U S A. 2025; 122(9):e2422706122.

PMID: 40014565 PMC: 11892647. DOI: 10.1073/pnas.2422706122.


Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain.

Vasylyev D, Zhao P, Schulman B, Waxman S J Gen Physiol. 2024; 156(11).

PMID: 39378238 PMC: 11465073. DOI: 10.1085/jgp.202413596.


I current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain.

Vasylyev D, Liu S, Waxman S J Physiol. 2023; 601(23):5341-5366.

PMID: 37846879 PMC: 10843455. DOI: 10.1113/JP284999.


A dynamic clamp protocol to artificially modify cell capacitance.

Pfeiffer P, Barreda Tomas F, Wu J, Schleimer J, Vida I, Schreiber S Elife. 2022; 11.

PMID: 35362411 PMC: 9135398. DOI: 10.7554/eLife.75517.


Bursting emerges from the complementary roles of neurons in a four-cell network.

Sakurai A, Katz P J Neurophysiol. 2022; 127(4):1054-1066.

PMID: 35320029 PMC: 8993528. DOI: 10.1152/jn.00017.2022.


References
1.
Szucs A, Elson R, Rabinovich M, Abarbanel H, Selverston A . Nonlinear behavior of sinusoidally forced pyloric pacemaker neurons. J Neurophysiol. 2001; 85(4):1623-38. DOI: 10.1152/jn.2001.85.4.1623. View

2.
Butera Jr R, Wilson C, Delnegro C, Smith J . A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. IEEE Trans Biomed Eng. 2002; 48(12):1460-70. DOI: 10.1109/10.966605. View

3.
Netoff T, Banks M, Dorval A, Acker C, Haas J, Kopell N . Synchronization in hybrid neuronal networks of the hippocampal formation. J Neurophysiol. 2004; 93(3):1197-208. DOI: 10.1152/jn.00982.2004. View

4.
Rothman J, Cathala L, Steuber V, Silver R . Synaptic depression enables neuronal gain control. Nature. 2009; 457(7232):1015-8. PMC: 2689940. DOI: 10.1038/nature07604. View

5.
Watanabe E, Honjo H, Anno T, Boyett M, Kodama I, TOYAMA J . Modulation of pacemaker activity of sinoatrial node cells by electrical load imposed by an atrial cell model. Am J Physiol. 1995; 269(5 Pt 2):H1735-42. DOI: 10.1152/ajpheart.1995.269.5.H1735. View