Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y
Biomolecules. 2024; 14(7).
PMID: 39062573
PMC: 11274695.
DOI: 10.3390/biom14070859.
Hung L, Terwilliger T, Waldo G, Nguyen H
Protein Sci. 2023; 33(2):e4886.
PMID: 38151801
PMC: 10804665.
DOI: 10.1002/pro.4886.
Chen C, Henderson J, Ruchkin D, Kirsh J, Baranov M, Bogdanov A
Int J Mol Sci. 2023; 24(15).
PMID: 37569365
PMC: 10418586.
DOI: 10.3390/ijms241511991.
Mao R, Tong C, Liu J
Contact (Thousand Oaks). 2023; 6:25152564231185011.
PMID: 37484831
PMC: 10359807.
DOI: 10.1177/25152564231185011.
Skeeters S, Camp T, Fan H, Zhang K
Curr Opin Pharmacol. 2022; 65:102236.
PMID: 35609383
PMC: 9308681.
DOI: 10.1016/j.coph.2022.102236.
Scaling production of GFP1-10 detector protein in E. coli for secretion screening by split GFP assay.
Muller C, Igwe C, Wiechert W, Oldiges M
Microb Cell Fact. 2021; 20(1):191.
PMID: 34592997
PMC: 8482599.
DOI: 10.1186/s12934-021-01672-6.
Engineering an efficient and bright split Corynactis californica green fluorescent protein.
Nguyen H, Terwilliger T, Waldo G
Sci Rep. 2021; 11(1):18440.
PMID: 34531533
PMC: 8445986.
DOI: 10.1038/s41598-021-98149-8.
Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology.
Pedelacq J, Cabantous S
Int J Mol Sci. 2019; 20(14).
PMID: 31311175
PMC: 6678664.
DOI: 10.3390/ijms20143479.
Design of a chromogenic substrate for elastase based on split GFP system-Proof of concept for colour switch sensors.
Ferreira A, Antunes E, Ribeiro A, Matama T, Azoia N, Cunha J
Biotechnol Rep (Amst). 2019; 22:e00324.
PMID: 31049301
PMC: 6479270.
DOI: 10.1016/j.btre.2019.e00324.
Split Green Fluorescent Proteins: Scope, Limitations, and Outlook.
Romei M, Boxer S
Annu Rev Biophys. 2019; 48:19-44.
PMID: 30786230
PMC: 6537611.
DOI: 10.1146/annurev-biophys-051013-022846.
Characterization of Split Fluorescent Protein Variants and Quantitative Analyses of Their Self-Assembly Process.
Koker T, Fernandez A, Pinaud F
Sci Rep. 2018; 8(1):5344.
PMID: 29593344
PMC: 5871787.
DOI: 10.1038/s41598-018-23625-7.
Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds.
Koker T, Tang N, Tian C, Zhang W, Wang X, Martel R
Nat Commun. 2018; 9(1):607.
PMID: 29426856
PMC: 5807522.
DOI: 10.1038/s41467-018-03046-w.
Structural Insight into the Photochemistry of Split Green Fluorescent Proteins: A Unique Role for a His-Tag.
Deng A, Boxer S
J Am Chem Soc. 2017; 140(1):375-381.
PMID: 29193968
PMC: 5815829.
DOI: 10.1021/jacs.7b10680.
Mispacking and the Fitness Landscape of the Green Fluorescent Protein Chromophore Milieu.
Banerjee S, Schenkelberg C, Jordan T, Reimertz J, Crone E, Crone D
Biochemistry. 2017; 56(5):736-747.
PMID: 28074648
PMC: 6193456.
DOI: 10.1021/acs.biochem.6b00800.
Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein.
Huang Y, Banerjee S, Crone D, Schenkelberg C, Pitman D, Buck P
Biochemistry. 2015; 54(40):6263-73.
PMID: 26397806
PMC: 4939794.
DOI: 10.1021/acs.biochem.5b00786.
Optogenetic control of intracellular signaling pathways.
Zhang K, Cui B
Trends Biotechnol. 2014; 33(2):92-100.
PMID: 25529484
PMC: 4308517.
DOI: 10.1016/j.tibtech.2014.11.007.
Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation.
Stepanenko O, Stepanenko O, Kuznetsova I, Verkhusha V, Turoverov K
Int Rev Cell Mol Biol. 2013; 302:221-78.
PMID: 23351712
PMC: 3739439.
DOI: 10.1016/B978-0-12-407699-0.00004-2.
Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate.
Kelkar D, Khushoo A, Yang Z, Skach W
J Biol Chem. 2011; 287(4):2568-78.
PMID: 22128180
PMC: 3268416.
DOI: 10.1074/jbc.M111.318766.
Thermodynamics, kinetics, and photochemistry of β-strand association and dissociation in a split-GFP system.
Do K, Boxer S
J Am Chem Soc. 2011; 133(45):18078-81.
PMID: 21981121
PMC: 3212612.
DOI: 10.1021/ja207985w.