» Articles » PMID: 21351768

Light-activated Reassembly of Split Green Fluorescent Protein

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2011 Mar 1
PMID 21351768
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Truncated green fluorescent protein (GFP) with the 11th β-strand removed is potentially interesting for bioconjugation, imaging, and the preparation of semisynthetic proteins with novel spectroscopic or functional properties. Surprisingly, the truncated GFP generated by removing the 11th strand, once refolded, does not reassemble with a synthetic peptide corresponding to strand 11 but does reassemble following light activation. The mechanism of this process has been studied in detail by absorption, fluorescence, and Raman spectroscopy. The chromophore in this refolded truncated GFP is found to be in the trans configuration. Upon exposure to light a photostationary state is formed between the trans and cis conformations of the chromophore, and only truncated GFP with the cis configuration of the chromophore binds the peptide. A kinetic model describing the light-activated reassembly of this split GFP is discussed. This unique light-driven reassembly is potentially useful for controlling protein-protein interactions.

Citing Articles

Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways.

Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y Biomolecules. 2024; 14(7).

PMID: 39062573 PMC: 11274695. DOI: 10.3390/biom14070859.


Engineering highly stable variants of Corynactis californica green fluorescent proteins.

Hung L, Terwilliger T, Waldo G, Nguyen H Protein Sci. 2023; 33(2):e4886.

PMID: 38151801 PMC: 10804665. DOI: 10.1002/pro.4886.


Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy.

Chen C, Henderson J, Ruchkin D, Kirsh J, Baranov M, Bogdanov A Int J Mol Sci. 2023; 24(15).

PMID: 37569365 PMC: 10418586. DOI: 10.3390/ijms241511991.


E-Syt1 Regulates Neuronal Activity-Dependent Endoplasmic Reticulum-Plasma Membrane Junctions and Surface Expression of AMPA Receptors.

Mao R, Tong C, Liu J Contact (Thousand Oaks). 2023; 6:25152564231185011.

PMID: 37484831 PMC: 10359807. DOI: 10.1177/25152564231185011.


The expanding role of split protein complementation in opsin-free optogenetics.

Skeeters S, Camp T, Fan H, Zhang K Curr Opin Pharmacol. 2022; 65:102236.

PMID: 35609383 PMC: 9308681. DOI: 10.1016/j.coph.2022.102236.


References
1.
Levskaya A, Weiner O, Lim W, Voigt C . Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature. 2009; 461(7266):997-1001. PMC: 2989900. DOI: 10.1038/nature08446. View

2.
Luin S, Voliani V, Lanza G, Bizzarri R, Amat P, Tozzini V . Raman study of chromophore states in photochromic fluorescent proteins. J Am Chem Soc. 2008; 131(1):96-103. DOI: 10.1021/ja804504b. View

3.
Andresen M, Wahl M, Stiel A, Grater F, Schafer L, Trowitzsch S . Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci U S A. 2005; 102(37):13070-4. PMC: 1201575. DOI: 10.1073/pnas.0502772102. View

4.
Andresen M, Stiel A, Trowitzsch S, Weber G, Eggeling C, Wahl M . Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A. 2007; 104(32):13005-9. PMC: 1941826. DOI: 10.1073/pnas.0700629104. View

5.
Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M . Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci U S A. 1996; 93(24):13617-22. PMC: 19369. DOI: 10.1073/pnas.93.24.13617. View