» Articles » PMID: 21331264

How Hyperpolarization and the Recovery of Excitability Affect Propagation Through a Virtual Anode in the Heart

Overview
Publisher Hindawi
Date 2011 Feb 19
PMID 21331264
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Researchers have suggested that the fate of a shock-induced wave front at the edge of a "virtual anode" (a region hyperpolarized by the shock) is a key factor determining success or failure during defibrillation of the heart. In this paper, we use a simple one-dimensional computer model to examine propagation speed through a hyperpolarized region. Our goal is to test the hypothesis that rapid propagation through a virtual anode can cause failure of propagation at the edge of the virtual anode. The calculations support this hypothesis and suggest that the time constant of the sodium inactivation gate is an important parameter. These results may be significant in understanding the mechanism of the upper limit of vulnerability.

Citing Articles

Optogenetic Termination of Cardiac Arrhythmia: Mechanistic Enlightenment and Therapeutic Application?.

Sasse P, Funken M, Beiert T, Bruegmann T Front Physiol. 2019; 10:675.

PMID: 31244670 PMC: 6563676. DOI: 10.3389/fphys.2019.00675.


Optogenetic Hyperpolarization of Cardiomyocytes Terminates Ventricular Arrhythmia.

Funken M, Malan D, Sasse P, Bruegmann T Front Physiol. 2019; 10:498.

PMID: 31105593 PMC: 6491897. DOI: 10.3389/fphys.2019.00498.


A Simplified Approach for Simultaneous Measurements of Wavefront Velocity and Curvature in the Heart Using Activation Times.

Mazeh N, Haines D, Kay M, Roth B Cardiovasc Eng Technol. 2014; 4(4):520-534.

PMID: 24772193 PMC: 3998731. DOI: 10.1007/s13239-013-0158-2.

References
1.
Banville I, Gray R, Ideker R, Smith W . Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res. 1999; 85(8):742-52. DOI: 10.1161/01.res.85.8.742. View

2.
Efimov I, Cheng Y, Van Wagoner D, Mazgalev T, Tchou P . Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res. 1998; 82(8):918-25. DOI: 10.1161/01.res.82.8.918. View

3.
Efimov I, Gray R, Roth B . Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2000; 11(3):339-53. DOI: 10.1111/j.1540-8167.2000.tb01805.x. View

4.
Chen P, Shibata N, Dixon E, Wolf P, Danieley N, Sweeney M . Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest. 1986; 77(3):810-23. PMC: 423467. DOI: 10.1172/JCI112378. View

5.
Trayanova N, Skouibine K, Moore P . Virtual electrode effects in defibrillation. Prog Biophys Mol Biol. 1998; 69(2-3):387-403. DOI: 10.1016/s0079-6107(98)00016-9. View