» Articles » PMID: 21331042

Tbx6-dependent Sox2 Regulation Determines Neural or Mesodermal Fate in Axial Stem Cells

Overview
Journal Nature
Specialty Science
Date 2011 Feb 19
PMID 21331042
Citations 129
Authors
Affiliations
Soon will be listed here.
Abstract

The classical view of neural plate development held that it arises from the ectoderm, after its separation from the mesodermal and endodermal lineages. However, recent cell-lineage-tracing experiments indicate that the caudal neural plate and paraxial mesoderm are generated from common bipotential axial stem cells originating from the caudal lateral epiblast. Tbx6 null mutant mouse embryos which produce ectopic neural tubes at the expense of paraxial mesoderm must provide a clue to the regulatory mechanism underlying this neural versus mesodermal fate choice. Here we demonstrate that Tbx6-dependent regulation of Sox2 determines the fate of axial stem cells. In wild-type embryos, enhancer N1 of the neural primordial gene Sox2 is activated in the caudal lateral epiblast, and the cells staying in the superficial layer sustain N1 activity and activate Sox2 expression in the neural plate. In contrast, the cells destined to become mesoderm activate Tbx6 and turn off enhancer N1 before migrating into the paraxial mesoderm compartment. In Tbx6 mutant embryos, however, enhancer N1 activity persists in the paraxial mesoderm compartment, eliciting ectopic Sox2 activation and transforming the paraxial mesoderm into neural tubes. An enhancer-N1-specific deletion mutation introduced into Tbx6 mutant embryos prevented this Sox2 activation in the mesodermal compartment and subsequent development of ectopic neural tubes, indicating that Tbx6 regulates Sox2 via enhancer N1. Tbx6-dependent repression of Wnt3a in the paraxial mesodermal compartment is implicated in this regulatory process. Paraxial mesoderm-specific misexpression of a Sox2 transgene in wild-type embryos resulted in ectopic neural tube development. Thus, Tbx6 represses Sox2 by inactivating enhancer N1 to inhibit neural development, and this is an essential step for the specification of paraxial mesoderm from the axial stem cells.

Citing Articles

Progress in understanding the vertebrate segmentation clock.

Isomura A, Kageyama R Nat Rev Genet. 2025; .

PMID: 40038453 DOI: 10.1038/s41576-025-00813-6.


The ratio of Wnt signaling activity to Sox2 transcription factor levels predicts neuromesodermal fate potential.

Morabito R, Tatarakis D, Swick R, Stettnisch S, Schilling T, Horsfield J bioRxiv. 2025; .

PMID: 39868081 PMC: 11761523. DOI: 10.1101/2025.01.16.633481.


Generation of self-renewing neuromesodermal progenitors with neuronal and skeletal muscle bipotential from human embryonic stem cells.

Sun P, Yuan Y, Lv Z, Yu X, Ma H, Liang S Cell Rep Methods. 2024; 4(11):100897.

PMID: 39515335 PMC: 11705767. DOI: 10.1016/j.crmeth.2024.100897.


Neural crest lineage in the protovertebrate model Ciona.

Todorov L, Oonuma K, Kusakabe T, Levine M, Lemaire L Nature. 2024; 635(8040):912-916.

PMID: 39443803 DOI: 10.1038/s41586-024-08111-7.


Comparison of human pluripotent stem cell differentiation protocols to generate neuroblastoma tumors.

Cheng B, Fang W, Pastor S, March A, Porras T, Wu H Sci Rep. 2024; 14(1):23050.

PMID: 39367051 PMC: 11452544. DOI: 10.1038/s41598-024-73947-y.


References
1.
Selleck M, Stern C . Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development. 1991; 112(2):615-26. DOI: 10.1242/dev.112.2.615. View

2.
Cambray N, Wilson V . Two distinct sources for a population of maturing axial progenitors. Development. 2007; 134(15):2829-40. DOI: 10.1242/dev.02877. View

3.
Katoh K, Takahashi Y, Hayashi S, Kondoh H . Improved mammalian vectors for high expression of G418 resistance. Cell Struct Funct. 1987; 12(6):575-80. DOI: 10.1247/csf.12.575. View

4.
Roelink H, Nusse R . Expression of two members of the Wnt family during mouse development--restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 1991; 5(3):381-8. DOI: 10.1101/gad.5.3.381. View

5.
Takada S, Stark K, Shea M, Vassileva G, McMahon J, McMahon A . Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 1994; 8(2):174-89. DOI: 10.1101/gad.8.2.174. View