» Articles » PMID: 21327189

Tracking Cellular Metabolomics in Lipoapoptosis- and Steatosis-developing Liver Cells

Overview
Journal Mol Biosyst
Date 2011 Feb 18
PMID 21327189
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Palmitate (PA) is known to induce reactive oxygen species (ROS) formation and apoptosis in liver cells, whereas concurrent treatment of oleate (OA) with PA predominately induces steatosis without ROS in liver cells. We previously reported that PA treatment induces the decoupling of glycolysis and tricarboxylic acid cycle (TCA cycle) fluxes, but OA co-treatment restored most metabolic fluxes to their control levels. However, the mechanisms by which metabolites are linked to metabolic fluxes and subsequent lipoapoptotic or steatotic phenotypes remain unclear. To determine the link, we used GC-MS-based polar and non-polar metabolic profiling in lipoapoptosis- or steatosis-developing H4IIEC3 hepatoma cells, to examine the metabolome at different time points after treatment with either PA alone (PA cells) or both PA and OA (PA/OA cells). Metabolic profiles revealed various changes in metabolite levels for TCA cycle intermediates, pentose phosphate pathway (PPP) intermediates, and energy storage metabolites between PA and PA/OA cells. For example, adenosine was markedly increased only in PA cells, whereas gluconate was increased in PA/OA cells. To assess the interaction among these metabolites, the metabolite-to-metabolite correlations were calculated and correlation networks were visualized. These correlation networks demonstrate that a dissociation among PPP metabolites was introduced in PA-treated cells, and this dissociation was restored in PA/OA-treated cells. Thus, our data suggest that abnormal PPP fluxes, in addition to increased adenosine levels, might be related to the decoupling of glycolysis and the resulting lipoapoptotic phenotype.

Citing Articles

Liver Assessment in Patients with Ataxia-Telangiectasia: Transient Elastography Detects Early Stages of Steatosis and Fibrosis.

Donath H, Wolke S, Knop V, Hess U, Duecker R, Trischler J Can J Gastroenterol Hepatol. 2023; 2023:2877350.

PMID: 36941982 PMC: 10024628. DOI: 10.1155/2023/2877350.


Deciphering hepatocellular carcinoma through metabolomics: from biomarker discovery to therapy evaluation.

Guo W, Tan H, Wang N, Wang X, Feng Y Cancer Manag Res. 2018; 10:715-734.

PMID: 29692630 PMC: 5903488. DOI: 10.2147/CMAR.S156837.


Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin.

Farsijani N, Liu Q, Kobayashi H, Davidoff O, Sha F, Fandrey J J Clin Invest. 2016; 126(4):1425-37.

PMID: 26927670 PMC: 4811147. DOI: 10.1172/JCI74997.


Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis.

Ahn J, Kim S, Hwang J, Kim J, Lee Y, Koh E PLoS One. 2015; 10(12):e0145539.

PMID: 26716989 PMC: 4696817. DOI: 10.1371/journal.pone.0145539.


The metabolomic window into hepatobiliary disease.

Beyoglu D, Idle J J Hepatol. 2013; 59(4):842-58.

PMID: 23714158 PMC: 4095886. DOI: 10.1016/j.jhep.2013.05.030.