» Articles » PMID: 21317891

Manipulating Surface States in Topological Insulator Nanoribbons

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2011 Feb 15
PMID 21317891
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Topological insulators display unique properties, such as the quantum spin Hall effect, because time-reversal symmetry allows charges and spins to propagate along the edge or surface of the topological insulator without scattering. However, the direct manipulation of these edge/surface states is difficult because they are significantly outnumbered by bulk carriers. Here, we report experimental evidence for the modulation of these surface states by using a gate voltage to control quantum oscillations in Bi(2)Te(3) nanoribbons. Surface conduction can be significantly enhanced by the gate voltage, with the mobility and Fermi velocity reaching values as high as ~5,800 cm(2) V(-1) s(-1) and ~3.7 × 10(5) m s(-1), respectively, with up to ~51% of the total conductance being due to the surface states. We also report the first observation of h/2e periodic oscillations, suggesting the presence of time-reversed paths with the same relative zero phase at the interference point. The high surface conduction and ability to manipulate the surface states demonstrated here could lead to new applications in nanoelectronics and spintronics.

Citing Articles

Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin BiSe Nanoribbons.

Sondors R, Niherysh K, Andzane J, Palermo X, Bauch T, Lombardi F Nanomaterials (Basel). 2023; 13(17).

PMID: 37686992 PMC: 10489768. DOI: 10.3390/nano13172484.


Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality.

Pfister F, Dorrie J, Schaft N, Buchele V, Unterweger H, Carnell L Front Immunol. 2023; 14:1223695.

PMID: 37662937 PMC: 10470061. DOI: 10.3389/fimmu.2023.1223695.


Aharonov-Bohm Interference and Phase-Coherent Surface-State Transport in Topological Insulator Rings.

Behner G, Jalil A, Heffels D, Kolzer J, Moors K, Mertens J Nano Lett. 2023; 23(14):6347-6353.

PMID: 37399545 PMC: 10375586. DOI: 10.1021/acs.nanolett.3c00905.


Topological signatures in the entanglement of a topological insulator-quantum dot hybrid.

Castro-Enriquez L, Martin-Ruiz A, Cambiaso M Sci Rep. 2022; 12(1):20856.

PMID: 36460733 PMC: 9718818. DOI: 10.1038/s41598-022-24939-3.


The quantum oscillations in different probe configurations in the [Formula: see text] topological insulator macroflake.

Huang S, Lin C, You S, Yan Y, Yu S, Chou M Sci Rep. 2022; 12(1):5191.

PMID: 35338190 PMC: 8956641. DOI: 10.1038/s41598-022-09073-4.


References
1.
Chen J, Qin H, Yang F, Liu J, Guan T, Qu F . Gate-voltage control of chemical potential and weak antilocalization in Bi₂Se₃. Phys Rev Lett. 2011; 105(17):176602. DOI: 10.1103/PhysRevLett.105.176602. View

2.
Zhang T, Cheng P, Chen X, Jia J, Ma X, He K . Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett. 2010; 103(26):266803. DOI: 10.1103/PhysRevLett.103.266803. View

3.
Kong D, Dang W, Cha J, Li H, Meister S, Peng H . Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential. Nano Lett. 2010; 10(6):2245-50. DOI: 10.1021/nl101260j. View

4.
Chen Y, Analytis J, Chu J, Liu Z, Mo S, Qi X . Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science. 2009; 325(5937):178-81. DOI: 10.1126/science.1173034. View

5.
Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L . Quantum spin hall insulator state in HgTe quantum wells. Science. 2007; 318(5851):766-70. DOI: 10.1126/science.1148047. View