» Articles » PMID: 21317457

Sumoylation of Vimentin354 is Associated with PIAS3 Inhibition of Glioma Cell Migration

Overview
Journal Oncotarget
Specialty Oncology
Date 2011 Feb 15
PMID 21317457
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The invasive phenotype of glioblastoma multiforme (GBM) is a hallmark of malignant process, yet the molecular mechanisms that dictate this locally invasive behavior remain poorly understood. Over-expression of PIAS3 effectively changes cell shape and inhibits GBM cell migration. We focused on the molecular target(s) of PIAS3 stimulated sumoylation, which play an important role in the inhibition of GBM cell motility. Here we report, through the immunoprecipitation with SUMO1 antibody, followed by proteomic analysis, the identification of vimentin (vimentin354), a nuclear component in GBM cells, as the main target of sumoylation promoted by PIAS3.

Citing Articles

Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases.

Lara-Urena N, Jafari V, Garcia-Dominguez M Int J Mol Sci. 2022; 23(14).

PMID: 35887358 PMC: 9316396. DOI: 10.3390/ijms23148012.


Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases.

Surolia R, Antony V Front Cell Dev Biol. 2022; 10:872759.

PMID: 35573702 PMC: 9096236. DOI: 10.3389/fcell.2022.872759.


The "Third Violin" in the Cytoskeleton Orchestra-The Role of Intermediate Filaments in the Endothelial Cell's Life.

Shakhov A, Alieva I Biomedicines. 2022; 10(4).

PMID: 35453578 PMC: 9027429. DOI: 10.3390/biomedicines10040828.


Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling.

Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch C Front Cell Dev Biol. 2022; 10:869069.

PMID: 35359446 PMC: 8961691. DOI: 10.3389/fcell.2022.869069.


Proteo-transcriptomics meta-analysis identifies SUMO2 as a promising target in glioblastoma multiforme therapeutics.

Krishna A, John S, Shinde P, Mishra R Cancer Cell Int. 2021; 21(1):575.

PMID: 34715855 PMC: 8555349. DOI: 10.1186/s12935-021-02279-y.


References
1.
Wible B, Wang L, Kuryshev Y, Basu A, Haldar S, Brown A . Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3beta in prostate cancer cells. J Biol Chem. 2002; 277(20):17852-62. DOI: 10.1074/jbc.M201689200. View

2.
Reinhardt A, Hubbard T . Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res. 1998; 26(9):2230-6. PMC: 147531. DOI: 10.1093/nar/26.9.2230. View

3.
Hoelzinger D, Mariani L, Weis J, Woyke T, Berens T, McDonough W . Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005; 7(1):7-16. PMC: 1490313. DOI: 10.1593/neo.04535. View

4.
Chung C, Liao J, Liu B, Rao X, Jay P, Berta P . Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997; 278(5344):1803-5. DOI: 10.1126/science.278.5344.1803. View

5.
Shiras A, Bhosale A, Shepal V, Shukla R, Baburao V, Prabhakara K . A unique model system for tumor progression in GBM comprising two developed human neuro-epithelial cell lines with differential transforming potential and coexpressing neuronal and glial markers. Neoplasia. 2004; 5(6):520-32. PMC: 1502577. DOI: 10.1016/s1476-5586(03)80036-2. View