» Articles » PMID: 21302993

Comparison Between Maximum Radial Expansion of Ultrasound Contrast Agents and Experimental Postexcitation Signal Results

Overview
Journal J Acoust Soc Am
Date 2011 Feb 10
PMID 21302993
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.

Citing Articles

Control of Acoustic Cavitation for Efficient Sonoporation with Phase-Shift Nanoemulsions.

Burgess M, Porter T Ultrasound Med Biol. 2019; 45(3):846-858.

PMID: 30638968 PMC: 8859868. DOI: 10.1016/j.ultrasmedbio.2018.12.001.


Quantitative Frequency-Domain Passive Cavitation Imaging.

Haworth K, Bader K, Rich K, Holland C, Mast T IEEE Trans Ultrason Ferroelectr Freq Control. 2016; 64(1):177-191.

PMID: 27992331 PMC: 5344809. DOI: 10.1109/TUFFC.2016.2620492.


Contrast Ultrasound Imaging Does Not Affect Heat Shock Protein 70 Expression in Cholesterol-Fed Rabbit Aorta.

Smith B, Simpson D, Miller R, Erdman Jr J, OBrien Jr W J Ultrasound Med. 2015; 34(7):1209-16.

PMID: 26112623 PMC: 4494680. DOI: 10.7863/ultra.34.7.1209.


Contrast Ultrasound Imaging of the Aorta Does Not Affect Progression of Atherosclerosis or Cardiovascular Biomarkers in ApoE-/- Mice.

Smith B, Simpson D, Sarwate S, Miller R, Erdman Jr J, OBrien Jr W J Ultrasound Med. 2015; 34(6):1115-22.

PMID: 26014332 PMC: 4471945. DOI: 10.7863/ultra.34.6.1115.


Algal cell disruption using microbubbles to localize ultrasonic energy.

Krehbiel J, Schideman L, King D, Freund J Bioresour Technol. 2014; 173:448-451.

PMID: 25311188 PMC: 4412598. DOI: 10.1016/j.biortech.2014.09.072.


References
1.
HOFF , Sontum , Hovem . Oscillations of polymeric microbubbles: effect of the encapsulating shell. J Acoust Soc Am. 2000; 107(4):2272-80. DOI: 10.1121/1.428557. View

2.
de Jong N, Emmer M, Chin C, Bouakaz A, Mastik F, Lohse D . "Compression-only" behavior of phospholipid-coated contrast bubbles. Ultrasound Med Biol. 2007; 33(4):653-6. DOI: 10.1016/j.ultrasmedbio.2006.09.016. View

3.
McDannold N, Vykhodtseva N, Hynynen K . Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol. 2008; 34(5):834-40. PMC: 2442477. DOI: 10.1016/j.ultrasmedbio.2007.10.016. View

4.
Coleman A, Choi M, Saunders J, Leighton T . Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med Biol. 1992; 18(3):267-81. DOI: 10.1016/0301-5629(92)90096-s. View

5.
McDannold N, Vykhodtseva N, Hynynen K . Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol. 2006; 51(4):793-807. DOI: 10.1088/0031-9155/51/4/003. View