Reischl B, Schupp B, Palabikyan H, Steger-Mahnert B, Fink C, Rittmann S
Sci Rep. 2025; 15(1):3755.
PMID: 39885323
PMC: 11782530.
DOI: 10.1038/s41598-025-87686-1.
Du Q, Wei Y, Zhang L, Ren D, Gao J, Dong X
Microb Cell Fact. 2024; 23(1):239.
PMID: 39227830
PMC: 11373211.
DOI: 10.1186/s12934-024-02492-0.
Myers T, Dykstra C
Appl Environ Microbiol. 2024; 90(7):e0224723.
PMID: 38856201
PMC: 11267900.
DOI: 10.1128/aem.02247-23.
Boswinkle K, Dinh T, Allen K
Front Microbiol. 2023; 14:1304671.
PMID: 38075885
PMC: 10702137.
DOI: 10.3389/fmicb.2023.1304671.
Costa K, Whitman W
J Bacteriol. 2023; 205(8):e0011523.
PMID: 37458589
PMC: 10448791.
DOI: 10.1128/jb.00115-23.
Application of the Fluorescence-Activating and Absorption-Shifting Tag (FAST) for Flow Cytometry in Methanogenic Archaea.
Adlung N, Scheller S
Appl Environ Microbiol. 2023; 89(4):e0178622.
PMID: 36920214
PMC: 10132111.
DOI: 10.1128/aem.01786-22.
Scale-up of biomass production by .
Palabikyan H, Ruddyard A, Pomper L, Novak D, Reischl B, Rittmann S
Front Microbiol. 2022; 13:1031131.
PMID: 36504798
PMC: 9727139.
DOI: 10.3389/fmicb.2022.1031131.
Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea.
Shao N, Fan Y, Chou C, Yavari S, Williams R, Jonathan Amster I
Commun Biol. 2022; 5(1):1113.
PMID: 36266535
PMC: 9584954.
DOI: 10.1038/s42003-022-04057-6.
Genetic Methods and Construction of Chromosomal Mutations in Methanogenic Archaea.
Thomsen J, Weidenbach K, Metcalf W, Schmitz R
Methods Mol Biol. 2022; 2522:105-117.
PMID: 36125745
DOI: 10.1007/978-1-0716-2445-6_6.
CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO-Fixing Methanogenic Archaeon.
Li J, Zhang L, Xu Q, Zhang W, Li Z, Chen L
Microbiol Spectr. 2022; 10(4):e0116522.
PMID: 35766512
PMC: 9430280.
DOI: 10.1128/spectrum.01165-22.
Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.
Zeng Z, Chen H, Yang H, Chen Y, Yang W, Feng X
Nat Commun. 2022; 13(1):1545.
PMID: 35318330
PMC: 8941075.
DOI: 10.1038/s41467-022-29264-x.
Using genome comparisons of wild-type and resistant mutants of to help understand mechanisms of resistance to methane inhibitors.
Long F, Cheung C, Whitman W, Cook G, Ronimus R
Access Microbiol. 2021; 3(7):000244.
PMID: 34595395
PMC: 8479958.
DOI: 10.1099/acmi.0.000244.
Study of Fe-S Cluster Proteins in Methanococcus maripaludis , a Model Archaeal Organism.
Zhao C, Roberts C, Drake I, Liu Y
Methods Mol Biol. 2021; 2353:37-50.
PMID: 34292542
DOI: 10.1007/978-1-0716-1605-5_2.
Posttranslational Methylation of Arginine in Methyl Coenzyme M Reductase Has a Profound Impact on both Methanogenesis and Growth of Methanococcus maripaludis.
Lyu Z, Shao N, Chou C, Shi H, Patel R, Duin E
J Bacteriol. 2019; 202(3).
PMID: 31740491
PMC: 6964740.
DOI: 10.1128/JB.00654-19.
The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis.
Li J, Zhang B, Zhou L, Qi L, Yue L, Zhang W
PLoS Genet. 2019; 15(8):e1008328.
PMID: 31404065
PMC: 6705878.
DOI: 10.1371/journal.pgen.1008328.
Assembly of Methyl Coenzyme M Reductase in the Methanogenic Archaeon Methanococcus maripaludis.
Lyu Z, Chou C, Shi H, Wang L, Ghebreab R, Phillips D
J Bacteriol. 2018; 200(7).
PMID: 29339414
PMC: 5847650.
DOI: 10.1128/JB.00746-17.
A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes.
Liu Y, Vinyard D, Reesbeck M, Suzuki T, Manakongtreecheep K, Holland P
Proc Natl Acad Sci U S A. 2016; 113(45):12703-12708.
PMID: 27791189
PMC: 5111681.
DOI: 10.1073/pnas.1615732113.
Metabolic processes of Methanococcus maripaludis and potential applications.
Goyal N, Zhou Z, Karimi I
Microb Cell Fact. 2016; 15(1):107.
PMID: 27286964
PMC: 4902934.
DOI: 10.1186/s12934-016-0500-0.