» Articles » PMID: 21284985

Brain Insulin Controls Adipose Tissue Lipolysis and Lipogenesis

Abstract

White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.

Citing Articles

Timing of exercise differentially impacts adipose tissue gain in male adolescent rats.

Kutsenko Y, Iniguez L, Barreda A, Pardo-Marin L, Toval A, Garrigos D Mol Metab. 2025; 93:102100.

PMID: 39832562 PMC: 11810837. DOI: 10.1016/j.molmet.2025.102100.


Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases.

Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W J Neuroinflammation. 2025; 22(1):7.

PMID: 39806503 PMC: 11730833. DOI: 10.1186/s12974-025-03334-5.


Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi A, Wei J Neurosci Bull. 2025; .

PMID: 39754628 DOI: 10.1007/s12264-024-01342-8.


Interplay between the brain and adipose tissue: a metabolic conversation.

Diaz-Castro F, Morselli E, Claret M EMBO Rep. 2024; 25(12):5277-5293.

PMID: 39558137 PMC: 11624209. DOI: 10.1038/s44319-024-00321-4.


Overnutrition causes insulin resistance and metabolic disorder through increased sympathetic nervous system activity.

Sakamoto K, Butera M, Zhou C, Maurizi G, Chen B, Ling L Cell Metab. 2024; 37(1):121-137.e6.

PMID: 39437790 PMC: 11711004. DOI: 10.1016/j.cmet.2024.09.012.


References
1.
Granneman J, Moore H, Granneman R, Greenberg A, Obin M, Zhu Z . Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem. 2006; 282(8):5726-35. DOI: 10.1074/jbc.M610580200. View

2.
Moraes R, Blondet A, Birkenkamp-Demtroeder K, Tirard J, Orntoft T, Gertler A . Study of the alteration of gene expression in adipose tissue of diet-induced obese mice by microarray and reverse transcription-polymerase chain reaction analyses. Endocrinology. 2003; 144(11):4773-82. DOI: 10.1210/en.2003-0456. View

3.
Pocai A, Lam T, Gutierrez-Juarez R, Obici S, Schwartz G, Bryan J . Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005; 434(7036):1026-31. DOI: 10.1038/nature03439. View

4.
Andrikopoulos S, Blair A, Deluca N, Fam B, Proietto J . Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008; 295(6):E1323-32. DOI: 10.1152/ajpendo.90617.2008. View

5.
German J, Kim F, Schwartz G, Havel P, Rhodes C, Schwartz M . Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology. 2009; 150(10):4502-11. PMC: 2754686. DOI: 10.1210/en.2009-0445. View