» Articles » PMID: 21276309

Strain Classification of Mycobacterium Tuberculosis: Congruence Between Large Sequence Polymorphisms and Spoligotypes

Overview
Specialty Pulmonary Medicine
Date 2011 Feb 1
PMID 21276309
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Spoligotyping is used in molecular epidemiological studies, and signature patterns have identified strain families. However, homoplasy occurs in the markers used for spoligotyping, which could lead to identical spoligotypes in phylogenetically unrelated strains. We determined the accuracy of strain classification based on spoligotyping using the six large sequence and single nucleotide polymorphisms-defined lineages as a gold standard. Of 919 Mycobacterium tuberculosis isolates, 870 (95%) were classified into a spoligotype family. Strains from a particular spoligotype family belonged to the same lineage. We did not find convergence to the same spoligotype. Spoligotype families appear to be sub-lineages within the main lineages.

Citing Articles

Genomic characteristics of prospectively sequenced from respiratory and non-respiratory sources.

Zhang X, Lam C, Sim E, Martinez E, Crighton T, Marais B iScience. 2024; 27(7):110327.

PMID: 39055934 PMC: 11269812. DOI: 10.1016/j.isci.2024.110327.


The future of CRISPR in Mycobacterium tuberculosis infection.

Zein-Eddine R, Refregier G, Cervantes J, Yokobori N J Biomed Sci. 2023; 30(1):34.

PMID: 37245014 PMC: 10221753. DOI: 10.1186/s12929-023-00932-4.


Disease phenotypic and geospatial features vary across genetic lineages for Tuberculosis within Arkansas, 2010-2020.

Renardy M, Gillen C, Yang Z, Mukasa L, Bates J, Butler R PLOS Glob Public Health. 2023; 3(2):e0001580.

PMID: 36963087 PMC: 10022325. DOI: 10.1371/journal.pgph.0001580.


Investigating the Diversity of Tuberculosis Spoligotypes with Dimensionality Reduction and Graph Theory.

Senelle G, Guyeux C, Refregier G, Sola C Genes (Basel). 2022; 13(12).

PMID: 36553596 PMC: 9778039. DOI: 10.3390/genes13122328.


CRISPRbuilder-TB: "CRISPR-builder for tuberculosis". Exhaustive reconstruction of the CRISPR locus in mycobacterium tuberculosis complex using SRA.

Guyeux C, Sola C, Nous C, Refregier G PLoS Comput Biol. 2021; 17(3):e1008500.

PMID: 33667225 PMC: 7968741. DOI: 10.1371/journal.pcbi.1008500.


References
1.
Brudey K, Driscoll J, Rigouts L, Prodinger W, Gori A, Al-Hajoj S . Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006; 6:23. PMC: 1468417. DOI: 10.1186/1471-2180-6-23. View

2.
Cowan L, Diem L, Brake M, Crawford J . Transfer of a Mycobacterium tuberculosis genotyping method, Spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system. J Clin Microbiol. 2004; 42(1):474-7. PMC: 321738. DOI: 10.1128/JCM.42.1.474-477.2004. View

3.
Flores L, Van T, Narayanan S, DeRiemer K, Kato-Maeda M, Gagneux S . Large sequence polymorphisms classify Mycobacterium tuberculosis strains with ancestral spoligotyping patterns. J Clin Microbiol. 2007; 45(10):3393-5. PMC: 2045339. DOI: 10.1128/JCM.00828-07. View

4.
Filliol I, Driscoll J, van Soolingen D, Kreiswirth B, Kremer K, Valetudie G . Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis. 2002; 8(11):1347-9. PMC: 2738532. DOI: 10.3201/eid0811.020125. View

5.
Comas I, Gagneux S . The past and future of tuberculosis research. PLoS Pathog. 2009; 5(10):e1000600. PMC: 2745564. DOI: 10.1371/journal.ppat.1000600. View