» Articles » PMID: 21263663

Visualization of Microvasculature by Dual-beam Phase-resolved Doppler Optical Coherence Tomography

Overview
Journal Opt Express
Date 2011 Jan 26
PMID 21263663
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

We present a dual-beam Doppler optical coherence tomography system for visualizing the microvasculature within the retina. The sample arm beams from two identical spectral domain optical coherence tomography (SD-OCT) systems are combined such that there is a small horizontal offset between them at the retina. Thereby we record two tomograms which are slightly separated in time. Phase-resolved Doppler analysis is performed between these two data sets. This system allows blood capillary imaging with high flow sensitivity and variable velocity range. To demonstrate the performance of our system we present images of the microvascular network around the fovea and around the optic nerve head of the human eye.

Citing Articles

Wide-field Ophthalmic Space-Division Multiplexing Optical Coherence Tomography.

Jerwick J, Huang Y, Dong Z, Slaudades A, Brucker A, Zhou C Photonics Res. 2021; 8(4):539-547.

PMID: 34222553 PMC: 8248931. DOI: 10.1364/PRJ.383034.


Full-range space-division multiplexing optical coherence tomography angiography.

Huang Y, Jerwick J, Liu G, Zhou C Biomed Opt Express. 2020; 11(8):4817-4834.

PMID: 32923080 PMC: 7449723. DOI: 10.1364/BOE.400162.


Profiling neovascular age-related macular degeneration choroidal neovascularization lesion response to anti-vascular endothelial growth factor therapy using SSOCTA.

Told R, Reiter G, Mittermuller T, Schranz M, Reumueller A, Schlanitz F Acta Ophthalmol. 2020; 99(2):e240-e246.

PMID: 32706171 PMC: 7984400. DOI: 10.1111/aos.14554.


Effect of total anti-VEGF treatment exposure on patterns of choroidal neovascularisation assessed by optical coherence tomography angiography in age-related macular degeneration: a retrospective case series.

Faes L, Ali Z, Wagner S, Patel P, Fu D, Bachmann L BMJ Open Ophthalmol. 2019; 4(1):e000244.

PMID: 31179393 PMC: 6528762. DOI: 10.1136/bmjophth-2018-000244.


Retinal Arteriole Pulse Waveform Analysis Using a Fully-Automated Doppler Optical Coherence Tomography Flowmeter: a Pilot Study.

Sakai J, Minamide K, Nakamura S, Song Y, Tani T, Yoshida A Transl Vis Sci Technol. 2019; 8(3):13.

PMID: 31110914 PMC: 6504205. DOI: 10.1167/tvst.8.3.13.


References
1.
Bachmann A, Villiger M, Blatter C, Lasser T, Leitgeb R . Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. Opt Express. 2009; 15(2):408-22. DOI: 10.1364/oe.15.000408. View

2.
Sticker M, Hitzenberger C, Leitgeb R, Fercher A . Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography. Opt Lett. 2007; 26(8):518-20. DOI: 10.1364/ol.26.000518. View

3.
Izatt J, Kulkarni M, Yazdanfar S, Barton J, Welch A . In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett. 2008; 22(18):1439-41. DOI: 10.1364/ol.22.001439. View

4.
Vakoc B, Lanning R, Tyrrell J, Padera T, Bartlett L, Stylianopoulos T . Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med. 2009; 15(10):1219-23. PMC: 2759417. DOI: 10.1038/nm.1971. View

5.
Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M . In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2009; 15(10):6121-39. DOI: 10.1364/oe.15.006121. View