» Articles » PMID: 21261765

Assessing the Complex Architecture of Polygenic Traits in Diverged Yeast Populations

Overview
Journal Mol Ecol
Date 2011 Jan 26
PMID 21261765
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits.

Citing Articles

The recombination landscape of introgression in yeast.

Schwarzkopf E, Brandt N, Smukowski Heil C PLoS Genet. 2025; 21(2):e1011585.

PMID: 39937775 PMC: 11845044. DOI: 10.1371/journal.pgen.1011585.


Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus).

Ouellet-Fagg C, Easton A, Parsons K, Danzmann R, Ferguson M Evol Dev. 2024; 27(1):e70000.

PMID: 39723482 PMC: 11670044. DOI: 10.1111/ede.70000.


An integrative taxonomy approach reveals Saccharomyces chiloensis sp. nov. as a newly discovered species from Coastal Patagonia.

Pena T, Villarreal P, Agier N, De Chiara M, Barria T, Urbina K PLoS Genet. 2024; 20(9):e1011396.

PMID: 39241096 PMC: 11410238. DOI: 10.1371/journal.pgen.1011396.


The recombination landscape of introgression in yeast.

Schwarzkopf E, Brandt N, Smukowski Heil C bioRxiv. 2024; .

PMID: 39026729 PMC: 11257466. DOI: 10.1101/2024.01.04.574263.


Quantitative genetic analysis of attractiveness of yeast products to Drosophila.

Yan W, Li Y, Louis E, Kyriacou C, Hu Y, Cordell R Genetics. 2024; 227(2).

PMID: 38560786 PMC: 11151935. DOI: 10.1093/genetics/iyae048.