» Articles » PMID: 21253487

Molecular Characterization of Putative Chordoma Cell Lines

Overview
Journal Sarcoma
Publisher Wiley
Date 2011 Jan 22
PMID 21253487
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Immortal tumor cell lines are an important model system for cancer research, however, misidentification and cross-contamination of cell lines are a common problem. Seven chordoma cell lines are reported in the literature, but none has been characterized in detail. We analyzed gene expression patterns and genomic copy number variations in five putative chordoma cell lines (U-CH1, CCL3, CCL4, GB60, and CM319). We also created a new chordoma cell line, U-CH2, and provided genotypes for cell lines for identity confirmation. Our analyses revealed that CCL3, CCL4, and GB60 are not chordoma cell lines, and that CM319 is a cancer cell line possibly derived from chordoma, but lacking expression of key chordoma biomarkers. U-CH1 and U-CH2 both have gene expression profiles, copy number aberrations, and morphology consistent with chordoma tumors. These cell lines also harbor genetic changes, such as loss of p16, MTAP, or PTEN, that make them potentially useful models for studying mechanisms of chordoma pathogenesis and for evaluating targeted therapies.

Citing Articles

Chordoma cells possess bone-dissolving activity at the bone invasion front.

Kawaai K, Oishi Y, Kuroda Y, Tamura R, Toda M, Matsuo K Cell Oncol (Dordr). 2024; 47(5):1663-1677.

PMID: 38652222 PMC: 11466907. DOI: 10.1007/s13402-024-00946-6.


Impact of silencing eEF2K expression on the malignant properties of chordoma.

Aydemir E, Tuysuz E, Bayrak O, Tecimel D, Hizli-Deniz A, Sahin F Mol Biol Rep. 2023; 50(4):3011-3022.

PMID: 36652154 DOI: 10.1007/s11033-023-08257-z.


efficacy assessment of the CDK4/6 inhibitor palbociclib and the PLK1 inhibitor volasertib in human chordoma xenografts.

Passeri T, Dahmani A, Masliah-Planchon J, El Botty R, Courtois L, Vacher S Front Oncol. 2022; 12:960720.

PMID: 36505864 PMC: 9732546. DOI: 10.3389/fonc.2022.960720.


Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants.

Usher I, Ligammari L, Ahrabi S, Hepburn E, Connolly C, Bond G Front Genome Ed. 2022; 4:932434.

PMID: 35865001 PMC: 9294353. DOI: 10.3389/fgeed.2022.932434.


Combinatorial Natural Killer Cell-based Immunotherapy Approaches Selectively Target Chordoma Cancer Stem Cells.

Hoke A, Padget M, Fabian K, Nandal A, Gallia G, Bilusic M Cancer Res Commun. 2022; 1(3):127-139.

PMID: 35765577 PMC: 9236084. DOI: 10.1158/2767-9764.crc-21-0020.


References
1.
Henderson S, Guiliano D, Presneau N, McLean S, Frow R, Vujovic S . A molecular map of mesenchymal tumors. Genome Biol. 2005; 6(9):R76. PMC: 1242211. DOI: 10.1186/gb-2005-6-9-r76. View

2.
Kristiansen G, Sammar M, Altevogt P . Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol. 2004; 35(3):255-62. DOI: 10.1023/b:hijo.0000032357.16261.c5. View

3.
MacLEOD R, Dirks W, Matsuo Y, Kaufmann M, MILCH H, Drexler H . Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer. 1999; 83(4):555-63. DOI: 10.1002/(sici)1097-0215(19991112)83:4<555::aid-ijc19>3.0.co;2-2. View

4.
Liu M, Lin S, Liu H, Candal F, Vafai A . Identification and authentication of animal cell culture by polymerase chain reaction amplification and DNA sequencing. In Vitro Cell Dev Biol Anim. 2004; 39(10):424-7. DOI: 10.1290/1543-706X(2003)039<0424:IAAOAC>2.0.CO;2. View

5.
OHara B, Paetau A, Miettinen M . Keratin subsets and monoclonal antibody HBME-1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Hum Pathol. 1998; 29(2):119-26. DOI: 10.1016/s0046-8177(98)90220-9. View