» Articles » PMID: 21245315

Signal Integration by DegS and RseB Governs the σ E-mediated Envelope Stress Response in Escherichia Coli

Overview
Specialty Science
Date 2011 Jan 20
PMID 21245315
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

In Escherichia coli, the σ(E) transcription factor monitors and maintains outer membrane (OM) integrity by activating genes required for assembly of its two key components, outer membrane proteins (OMPs) and lipopolysaccharide (LPS) and by transcribing small RNAs to down-regulate excess unassembled OMPs. σ(E) activity is governed by the rate of degradation of its membrane-spanning anti-σ factor, RseA. Importantly, the DegS protease can initiate RseA cleavage only when activated by binding to unassembled OMPs. The prevalent paradigm has been that the σ(E) response is controlled by the amount of activated DegS. Here we demonstrate that inactivation of a second negative regulator, the periplasmic protein RseB, is also required for σ(E) induction in vivo. Moreover, OMPs, previously known only to activate DegS, also generate a signal to antagonize RseB inhibition. This signal may be lipid related, as RseB is structurally similar to proteins that bind lipids. We propose that the use of an AND gate enables σ(E) to sense and integrate multivariate signals from the envelope.

Citing Articles

DegS regulates the aerobic metabolism of via the ArcA-isocitrate dehydrogenase pathway for growth and intestinal colonization.

Zhao J, Huang X, Li Q, Ren F, Hu H, Yuan J Front Cell Infect Microbiol. 2024; 14:1482919.

PMID: 39554810 PMC: 11564185. DOI: 10.3389/fcimb.2024.1482919.


Physiological Roles of an -specific σ Factor.

Bacon E, Myers K, Iruegas-Lopez R, Banta A, Place M, Ebersberger I bioRxiv. 2024; .

PMID: 39026751 PMC: 11257525. DOI: 10.1101/2024.07.08.602572.


Design of a tunable bacterial gene expression system using engineered σ factors.

Patel T, Dinda A, Mahesh S, Nadig S, Reddy N, Gopal B Appl Environ Microbiol. 2024; 90(5):e0002124.

PMID: 38606981 PMC: 11107172. DOI: 10.1128/aem.00021-24.


Implication of the σ Regulon Members OmpO and σ in the Δ-Mediated Decrease of Oxidative Stress Tolerance in Stenotrophomonas maltophilia.

Ku R, Li L, Liu Y, Hu E, Lin Y, Lu H Microbiol Spectr. 2023; 11(4):e0108023.

PMID: 37284772 PMC: 10433810. DOI: 10.1128/spectrum.01080-23.


The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential.

Kristensen S, Diep D, Kjos M, Mathiesen G Microlife. 2023; 4:uqad025.

PMID: 37223736 PMC: 10202637. DOI: 10.1093/femsml/uqad025.


References
1.
Sperandeo P, Deho G, Polissi A . The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta. 2009; 1791(7):594-602. DOI: 10.1016/j.bbalip.2009.01.011. View

2.
Sperandeo P, Lau F, Carpentieri A, De Castro C, Molinaro A, Deho G . Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol. 2008; 190(13):4460-9. PMC: 2446812. DOI: 10.1128/JB.00270-08. View

3.
Cezairliyan B, Sauer R . Inhibition of regulated proteolysis by RseB. Proc Natl Acad Sci U S A. 2007; 104(10):3771-6. PMC: 1820659. DOI: 10.1073/pnas.0611567104. View

4.
Wollmann P, Zeth K . The structure of RseB: a sensor in periplasmic stress response of E. coli. J Mol Biol. 2007; 372(4):927-941. DOI: 10.1016/j.jmb.2007.06.039. View

5.
Tam C, Missiakas D . Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli. Mol Microbiol. 2005; 55(5):1403-12. DOI: 10.1111/j.1365-2958.2005.04497.x. View