» Articles » PMID: 21220510

Microtubule Disruption Targets HIF-1alpha MRNA to Cytoplasmic P-bodies for Translational Repression

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2011 Jan 12
PMID 21220510
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

The hypoxia inducible factor 1α (HIF-1α) is overexpressed in solid tumors, driving tumor angiogenesis and survival. However, the mechanisms regulating HIF-1α expression in solid tumors are not fully understood. In this study, we find that microtubule integrity and dynamics are intricately involved in orchestrating HIF-1α translation. HIF-1α messenger RNA (mRNA) traffics on dynamic microtubules when it is actively translated. Microtubule perturbation by taxol (TX) and other microtubule-targeting drugs stalls HIF-1α mRNA transport and releases it from polysomes, suppressing its translation. Immunoprecipitation of the P-body component Argonaute 2 (Ago2) after microtubule disruption shows significant enrichment of HIF-1α mRNAs and HIF-targeting microRNAs (miRNAs). Inhibition of HIF-repressing miRNAs or Ago2 knockdown abrogates TX's ability to suppress HIF-1α translation. Interestingly, microtubule repolymerization after nocodazole washout allows HIF-1α mRNA to reenter active translation, suggesting that microtubule dynamics exert tight yet reversible control over HIF-1α translation. Collectively, we provide evidence for a new mechanism of microtubule-dependent HIF-1α translation with important implications for cell biology.

Citing Articles

Protein aggregation and biomolecular condensation in hypoxic environments (Review).

Li C, Hao B, Yang H, Wang K, Fan L, Xiao W Int J Mol Med. 2024; 53(4).

PMID: 38362920 PMC: 10903932. DOI: 10.3892/ijmm.2024.5357.


Combinatorial regulation by ERK1/2 and CK1δ protein kinases leads to HIF-1α association with microtubules and facilitates its symmetrical distribution during mitosis.

Arseni C, Samiotaki M, Panayotou G, Simos G, Mylonis I Cell Mol Life Sci. 2024; 81(1):72.

PMID: 38300329 PMC: 10834586. DOI: 10.1007/s00018-024-05120-7.


Associations between HIFs and tumor immune checkpoints: mechanism and therapy.

Liu J, Jiang Y, Chen L, Qian Z, Zhang Y Discov Oncol. 2024; 15(1):2.

PMID: 38165484 PMC: 10761656. DOI: 10.1007/s12672-023-00836-7.


Action Sites and Clinical Application of HIF-1α Inhibitors.

Xu R, Wang F, Yang H, Wang Z Molecules. 2022; 27(11).

PMID: 35684364 PMC: 9182161. DOI: 10.3390/molecules27113426.


Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles.

Wordeman L, Vicente J Cancers (Basel). 2021; 13(22).

PMID: 34830812 PMC: 8616087. DOI: 10.3390/cancers13225650.


References
1.
Semenza G . Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10):721-32. DOI: 10.1038/nrc1187. View

2.
Meister G, Landthaler M, Peters L, Chen P, Urlaub H, Luhrmann R . Identification of novel argonaute-associated proteins. Curr Biol. 2005; 15(23):2149-55. DOI: 10.1016/j.cub.2005.10.048. View

3.
Schepens B, Tinton S, Bruynooghe Y, Beyaert R, Cornelis S . The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res. 2006; 33(21):6884-94. PMC: 1310900. DOI: 10.1093/nar/gki1000. View

4.
Giannakakou P, Sackett D, Kang Y, Zhan Z, Buters J, Fojo T . Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem. 1997; 272(27):17118-25. DOI: 10.1074/jbc.272.27.17118. View

5.
Gascoigne K, Taylor S . Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008; 14(2):111-22. DOI: 10.1016/j.ccr.2008.07.002. View