» Articles » PMID: 21142886

The Proteome of Sickle Cell Disease: Insights from Exploratory Proteomic Profiling

Overview
Publisher Informa Healthcare
Date 2010 Dec 15
PMID 21142886
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The expanding realm of exploratory proteomics has added a unique dimension to the study of the complex pathophysiology involved in sickle cell disease. A review of proteomic studies published on sickle cell erythrocytes and plasma shows trends of upregulation of antioxidant proteins, an increase in cytoskeletal defects, an increase in protein repair and turnover components, a decrease in lipid raft proteins and apolipoprotein dysregulation. Many of these findings are consistent with the pathophysiology of sickle cell disease, including high oxidant burden, resulting in damage to cytoskeletal and other proteins, and erythrocyte rigidity. More unexpected findings, such as a decrease in lipid raft components and apolipoprotein dysregulation, offer previously unexplored targets for future investigation and potential therapeutic intervention. Exploratory proteomic profiling is a valuable source of hypothesis generation for the cellular and molecular pathophysiology of sickle cell disease.

Citing Articles

Whole Blood Transcriptome Analysis in Congenital Anemia Patients.

Sanchez-Villalobos M, Campos Banos E, Martinez-Balsalobre E, Navarro-Ramirez V, Videla M, Pinilla M Int J Mol Sci. 2024; 25(21).

PMID: 39519257 PMC: 11546763. DOI: 10.3390/ijms252111706.


Advances in non-viral mRNA delivery to the spleen.

Narasipura E, Fenton O Biomater Sci. 2024; 12(12):3027-3044.

PMID: 38712531 PMC: 11175841. DOI: 10.1039/d4bm00038b.


Clinical Biomarkers of Acute Vaso-Occlusive Sickle Cell Crisis.

Khurana K, Mahajan S, Acharya S, Kumar S, Toshniwal S Cureus. 2024; 16(3):e56389.

PMID: 38633967 PMC: 11022002. DOI: 10.7759/cureus.56389.


Proteomic discovery in sickle cell disease: Elevated neurogranin levels in children with sickle cell disease.

Lance E, Faulcon L, Fu Z, Yang J, Whyte-Stewart D, Strouse J Proteomics Clin Appl. 2021; 15(5):e2100003.

PMID: 33915030 PMC: 8666096. DOI: 10.1002/prca.202100003.


A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic.

Yasara N, Premawardhena A, Mettananda S Orphanet J Rare Dis. 2021; 16(1):114.

PMID: 33648529 PMC: 7919989. DOI: 10.1186/s13023-021-01757-w.


References
1.
Jison M, Munson P, Barb J, Suffredini A, Talwar S, Logun C . Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease. Blood. 2004; 104(1):270-80. PMC: 5560446. DOI: 10.1182/blood-2003-08-2760. View

2.
Fowler V, Sussmann M, Miller P, Flucher B, Daniels M . Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol. 1993; 120(2):411-20. PMC: 2119515. DOI: 10.1083/jcb.120.2.411. View

3.
Gladwin M, Sachdev V, Jison M, Shizukuda Y, Plehn J, Minter K . Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004; 350(9):886-95. DOI: 10.1056/NEJMoa035477. View

4.
Ren H, Ghebremeskel K, Okpala I, Lee A, Ibegbulam O, Crawford M . Patients with sickle cell disease have reduced blood antioxidant protection. Int J Vitam Nutr Res. 2008; 78(3):139-47. DOI: 10.1024/0300-9831.78.3.139. View

5.
Perelman N, Selvaraj S, Batra S, Luck L, Erdreich-Epstein A, Coates T . Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood. 2003; 102(4):1506-14. DOI: 10.1182/blood-2002-11-3422. View