» Articles » PMID: 21131385

Alu Repeat Discovery and Characterization Within Human Genomes

Overview
Journal Genome Res
Specialty Genetics
Date 2010 Dec 7
PMID 21131385
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Human genomes are now being rapidly sequenced, but not all forms of genetic variation are routinely characterized. In this study, we focus on Alu retrotransposition events and seek to characterize differences in the pattern of mobile insertion between individuals based on the analysis of eight human genomes sequenced using next-generation sequencing. Applying a rapid read-pair analysis algorithm, we discover 4342 Alu insertions not found in the human reference genome and show that 98% of a selected subset (63/64) experimentally validate. Of these new insertions, 89% correspond to AluY elements, suggesting that they arose by retrotransposition. Eighty percent of the Alu insertions have not been previously reported and more novel events were detected in Africans when compared with non-African samples (76% vs. 69%). Using these data, we develop an experimental and computational screen to identify ancestry informative Alu retrotransposition events among different human populations.

Citing Articles

Downregulation of transposable elements extends lifespan in Caenorhabditis elegans.

Sturm A, Saskoi E, Hotzi B, Tarnoci A, Barna J, Bodnar F Nat Commun. 2023; 14(1):5278.

PMID: 37644049 PMC: 10465613. DOI: 10.1038/s41467-023-40957-9.


Transposable Elements in Pluripotent Stem Cells and Human Disease.

Ma G, Babarinde I, Zhou X, Hutchins A Front Genet. 2022; 13:902541.

PMID: 35719395 PMC: 9201960. DOI: 10.3389/fgene.2022.902541.


Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells.

McKerrow W, Tang Z, Steranka J, Payer L, Boeke J, Keefe D Philos Trans R Soc Lond B Biol Sci. 2020; 375(1795):20190335.

PMID: 32075555 PMC: 7061987. DOI: 10.1098/rstb.2019.0335.


Impact of polymorphic transposable elements on transcription in lymphoblastoid cell lines from public data.

Spirito G, Mangoni D, Sanges R, Gustincich S BMC Bioinformatics. 2019; 20(Suppl 9):495.

PMID: 31757210 PMC: 6873650. DOI: 10.1186/s12859-019-3113-x.


Pedigree-based estimation of human mobile element retrotransposition rates.

Feusier J, Watkins W, Thomas J, Farrell A, Witherspoon D, Baird L Genome Res. 2019; 29(10):1567-1577.

PMID: 31575651 PMC: 6771411. DOI: 10.1101/gr.247965.118.


References
1.
Huang C, Schneider A, Lu Y, Niranjan T, Shen P, Robinson M . Mobile interspersed repeats are major structural variants in the human genome. Cell. 2010; 141(7):1171-82. PMC: 2943426. DOI: 10.1016/j.cell.2010.05.026. View

2.
Carroll M, Roy-Engel A, Nguyen S, Salem A, Vogel E, Vincent B . Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol. 2001; 311(1):17-40. DOI: 10.1006/jmbi.2001.4847. View

3.
Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J . Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; 110(1-4):462-7. DOI: 10.1159/000084979. View

4.
Bamshad M, Wooding S, Watkins W, Ostler C, Batzer M, Jorde L . Human population genetic structure and inference of group membership. Am J Hum Genet. 2003; 72(3):578-89. PMC: 1180234. DOI: 10.1086/368061. View

5.
Houck C, Rinehart F, Schmid C . A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol. 1979; 132(3):289-306. DOI: 10.1016/0022-2836(79)90261-4. View