» Articles » PMID: 21127734

Measurement of Absolute Blood Flow Velocity in Outflow Tract of HH18 Chicken Embryo Based on 4D Reconstruction Using Spectral Domain Optical Coherence Tomography

Overview
Specialty Radiology
Date 2010 Dec 4
PMID 21127734
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The measurement of blood-plasma absolute velocity distributions with high spatial and temporal resolution in vivo is important for the investigation of embryonic heart at its early stage of development. We introduce a novel method to measure absolute blood flow velocity based on high speed spectral domain optical coherence tomography (OCT) and apply it to measure velocities across the heart outflow tract (OFT) of a chicken embryo (stage HH18). First, we use the OCT system to acquire 4D 
[(x,y,z) + t] images of the OFT in vivo. Second, we reconstruct the 4D microstructural images and obtain the orientation of the OFT at its maximum expansion, from which the centerline of the OFT is calculated based on the OFT boundary segmentation. Assuming flow is parallel to the vessel orientation, the obtained centerline indicates the flow direction. Finally, the absolute flow velocity is evaluated based on the direction given by the centerline and the axial velocity obtained from Doppler OCT. Using this method, we compare flow velocity profiles at various positions along the chicken embryo OFT.

Citing Articles

Open-source, highly efficient, post-acquisition synchronization for 4D dual-contrast imaging of the mouse embryonic heart over development with optical coherence tomography.

Faubert A, Larina I, Wang S Biomed Opt Express. 2023; 14(1):163-181.

PMID: 36698661 PMC: 9842004. DOI: 10.1364/BOE.475027.


OCT based four-dimensional cardiac imaging of a living chick embryo using an impedance signal as a gating for post-acquisition synchronization.

Ma Y, Li C, Jiang H, Zhao Y, Liu J, Yu Y Biomed Opt Express. 2023; 13(12):6595-6609.

PMID: 36589591 PMC: 9774874. DOI: 10.1364/BOE.476254.


Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease.

Keller B, Kowalski W, Tinney J, Tobita K, Hu N J Cardiovasc Dev Dis. 2020; 7(2).

PMID: 32545681 PMC: 7344498. DOI: 10.3390/jcdd7020023.


Microvascular imaging of the skin.

Deegan A, Wang R Phys Med Biol. 2019; 64(7):07TR01.

PMID: 30708364 PMC: 7787005. DOI: 10.1088/1361-6560/ab03f1.


Complex regression Doppler optical coherence tomography.

Elahi S, Gu S, Thrane L, Rollins A, Jenkins M J Biomed Opt. 2018; 23(4):1-8.

PMID: 29704328 PMC: 5920204. DOI: 10.1117/1.JBO.23.4.046009.


References
1.
Ursem N, Stekelenburg-de Vos S, Wladimiroff J, Poelmann R, Gittenberger-de Groot A, Hu N . Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction. J Exp Biol. 2004; 207(Pt 9):1487-90. DOI: 10.1242/jeb.00902. View

2.
Leitgeb R, Hitzenberger C, Fercher A . Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2009; 11(8):889-94. DOI: 10.1364/oe.11.000889. View

3.
Davis A, Rothenberg F, Shepherd N, Izatt J . In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development. J Opt Soc Am A Opt Image Sci Vis. 2008; 25(12):3134-43. DOI: 10.1364/josaa.25.003134. View

4.
Phoon C, Aristizabal O, Turnbull D . Spatial velocity profile in mouse embryonic aorta and Doppler-derived volumetric flow: a preliminary model. Am J Physiol Heart Circ Physiol. 2002; 283(3):H908-16. DOI: 10.1152/ajpheart.00869.2001. View

5.
Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W . Optical coherence tomography. Science. 1991; 254(5035):1178-81. PMC: 4638169. DOI: 10.1126/science.1957169. View