» Articles » PMID: 21106766

Interheme Electron Tunneling in Cytochrome C Oxidase

Overview
Specialty Science
Date 2010 Nov 26
PMID 21106766
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain that catalyzes respiratory reduction of dioxygen (O(2)) to water in all eukaryotes and many aerobic bacteria. CcO, and its homologs among the heme-copper oxidases, has an active site composed of an oxygen-binding heme and a copper center in the vicinity, plus another heme group that donates electrons to this site. In most oxidoreduction enzymes, electron transfer (eT) takes place by quantum-mechanical electron tunneling. Here we show by independent molecular dynamics and quantum-chemical methods that the heme-heme eT in CcO differs from the majority of cases in having an exceptionally low reorganization energy. We show that the rate of interheme eT in CcO may nevertheless be predicted by the Moser-Dutton equation if reinterpreted as the average of the eT rates between all individual atoms of the donor and acceptor weighed by the respective packing densities between them. We argue that this modification may be necessary at short donor/acceptor distances comparable to the donor/acceptor radii.

Citing Articles

Long-range charge transfer mechanism of the IIIIV mycobacterial supercomplex.

Riepl D, Gamiz-Hernandez A, Kovalova T, Krol S, Mader S, Sjostrand D Nat Commun. 2024; 15(1):5276.

PMID: 38902248 PMC: 11189923. DOI: 10.1038/s41467-024-49628-9.


New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics.

Mokhtari M, Khoshbakht S, Ziyaei K, Akbari M, Moravveji S Brief Bioinform. 2024; 25(2).

PMID: 38446742 PMC: 10939336. DOI: 10.1093/bib/bbae074.


Methemoglobin formation in mutant hemoglobin α chains: electron transfer parameters and rates.

Dixit V, Blumberger J, Vyas S Biophys J. 2021; 120(17):3807-3819.

PMID: 34265263 PMC: 8456175. DOI: 10.1016/j.bpj.2021.07.007.


Architecture of bacterial respiratory chains.

Kaila V, Wikstrom M Nat Rev Microbiol. 2021; 19(5):319-330.

PMID: 33437024 DOI: 10.1038/s41579-020-00486-4.


A switch point in the molecular chaperone Hsp90 responding to client interaction.

Rutz D, Luo Q, Freiburger L, Madl T, Kaila V, Sattler M Nat Commun. 2018; 9(1):1472.

PMID: 29662162 PMC: 5902578. DOI: 10.1038/s41467-018-03946-x.


References
1.
Pilet E, Jasaitis A, Liebl U, Vos M . Electron transfer between hemes in mammalian cytochrome c oxidase. Proc Natl Acad Sci U S A. 2004; 101(46):16198-203. PMC: 528948. DOI: 10.1073/pnas.0405032101. View

2.
Kannt A, Lancaster C, Michel H . The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J. 1998; 74(2 Pt 1):708-21. PMC: 1302552. DOI: 10.1016/S0006-3495(98)73996-7. View

3.
Perdew . Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter. 1986; 33(12):8822-8824. DOI: 10.1103/physrevb.33.8822. View

4.
MacKerell A, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field M . All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 2014; 102(18):3586-616. DOI: 10.1021/jp973084f. View

5.
Wikstrom M, Verkhovsky M . Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. Biochim Biophys Acta. 2007; 1767(10):1200-14. DOI: 10.1016/j.bbabio.2007.06.008. View