» Articles » PMID: 21078984

RNA-mediated Epigenetic Regulation of DNA Copy Number

Overview
Specialty Science
Date 2010 Nov 17
PMID 21078984
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Increasing evidence suggests that parentally supplied RNA plays crucial roles during eukaryotic development. This epigenetic contribution may regulate gene expression from the earliest stages. Although present in a variety of eukaryotes, maternally inherited characters are especially prominent in ciliated protozoa, in which parental noncoding RNA molecules instruct whole-genome reorganization. This includes removal of nearly all noncoding DNA and sorting the remaining fragments, producing extremely gene-rich somatic genomes. Chromosome fragmentation and extensive replication produce variable DNA copy numbers in the somatic genome. Understanding the forces that drive and regulate copy number change is fundamental. We show that RNA molecules present in parental cells during sexual reproduction can regulate chromosome copy number in the developing nucleus of the ciliate Oxytricha. Experimentally induced changes in RNA abundance can both increase and decrease the levels of corresponding DNA molecules in progeny, demonstrating epigenetic inheritance of chromosome copy number. These results suggest that maternal RNA, in addition to controlling gene expression or DNA processing, can also program DNA amplification levels.

Citing Articles

Genes and proteins expressed at different life cycle stages in the model protist Euplotes vannus revealed by both transcriptomic and proteomic approaches.

Jiang Y, Chen X, Wang C, Lyu L, Al-Farraj S, Stover N Sci China Life Sci. 2024; 68(1):232-248.

PMID: 39276255 DOI: 10.1007/s11427-023-2605-9.


Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends.

Betermier M, Klobutcher L, Orias E Microbiol Mol Biol Rev. 2023; 87(4):e0018422.

PMID: 38009915 PMC: 10732028. DOI: 10.1128/mmbr.00184-22.


Identification of novel, functional, long noncoding RNAs involved in programmed, large-scale genome rearrangements.

Bechara S, Kabbani L, Maurer-Alcala X, Nowacki M RNA. 2022; 28(8):1110-1127.

PMID: 35680167 PMC: 9297840. DOI: 10.1261/rna.079134.122.


The macronuclear genome of the Antarctic psychrophilic marine ciliate Euplotes focardii reveals new insights on molecular cold adaptation.

Mozzicafreddo M, Pucciarelli S, Swart E, Piersanti A, Emmerich C, Migliorelli G Sci Rep. 2021; 11(1):18782.

PMID: 34548559 PMC: 8455672. DOI: 10.1038/s41598-021-98168-5.


Genome plasticity in Paramecium bursaria revealed by population genomics.

Cheng Y, Liu C, Yu Y, Jhou Y, Fujishima M, Tsai I BMC Biol. 2020; 18(1):180.

PMID: 33250052 PMC: 7702705. DOI: 10.1186/s12915-020-00912-2.


References
1.
Estivill X, Armengol L . Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet. 2007; 3(10):1787-99. PMC: 2039766. DOI: 10.1371/journal.pgen.0030190. View

2.
Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E . Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002; 62(21):6240-5. View

3.
van de Wiel M, Costa J, Smid K, Oudejans C, Bergman A, Meijer G . Expression microarray analysis and oligo array comparative genomic hybridization of acquired gemcitabine resistance in mouse colon reveals selection for chromosomal aberrations. Cancer Res. 2005; 65(22):10208-13. DOI: 10.1158/0008-5472.CAN-05-0760. View

4.
Dopman E, Hartl D . A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2007; 104(50):19920-5. PMC: 2148398. DOI: 10.1073/pnas.0709888104. View

5.
Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G . The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005; 307(5714):1434-40. DOI: 10.1126/science.1101160. View