» Articles » PMID: 21072214

Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles Gambiae (G3) Mosquitoes

Overview
Journal PLoS One
Date 2010 Nov 13
PMID 21072214
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.

Methodology/principal Findings: We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.

Conclusion: There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.

Citing Articles

The Chromosome-level Genome Provides Insights into the Evolution and Adaptation of Extreme Aggression.

Liu P, Wang Z, Qi M, Hu H Mol Biol Evol. 2024; 41(9).

PMID: 39271164 PMC: 11427683. DOI: 10.1093/molbev/msae195.


Zika virus exists in enterocytes and enteroendocrine cells of the midgut.

Chen T, Raduwan H, Marin-Lopez A, Cui Y, Fikrig E iScience. 2024; 27(7):110353.

PMID: 39055935 PMC: 11269924. DOI: 10.1016/j.isci.2024.110353.


Lipids as a key element of insect defense systems.

Wronska A, Kaczmarek A, Bogus M, Kuna A Front Genet. 2023; 14:1183659.

PMID: 37359377 PMC: 10289264. DOI: 10.3389/fgene.2023.1183659.


The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance.

Kaczmarek A, Bogus M PeerJ. 2022; 9:e12563.

PMID: 35036124 PMC: 8710053. DOI: 10.7717/peerj.12563.


Aquatic Exposure to Abscisic Acid Transstadially Enhances Resistance to Malaria Parasite Infection.

Taylor D, Haney R, Luckhart S Genes (Basel). 2020; 11(12).

PMID: 33255333 PMC: 7761407. DOI: 10.3390/genes11121393.


References
1.
Canavoso L, Jouni Z, Karnas K, Pennington J, Wells M . Fat metabolism in insects. Annu Rev Nutr. 2001; 21:23-46. DOI: 10.1146/annurev.nutr.21.1.23. View

2.
LARKIN M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H . Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947-8. DOI: 10.1093/bioinformatics/btm404. View

3.
Marinotti O, Capurro M, Nirmala X, Calvo E, James A . Structure and expression of the lipophorin-encoding gene of the malaria vector, Anopheles gambiae. Comp Biochem Physiol B Biochem Mol Biol. 2006; 144(1):101-9. DOI: 10.1016/j.cbpb.2006.01.012. View

4.
Halwani A, Niven D, Dunphy G . Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of Galleria mellonella. J Invertebr Pathol. 2000; 76(4):233-41. DOI: 10.1006/jipa.2000.4978. View

5.
Pratt C, Weers P . Lipopolysaccharide binding of an exchangeable apolipoprotein, apolipophorin III, from Galleria mellonella. Biol Chem. 2004; 385(11):1113-9. DOI: 10.1515/BC.2004.145. View