» Articles » PMID: 21062101

Target-cancer-cell-specific Activatable Fluorescence Imaging Probes: Rational Design and in Vivo Applications

Overview
Journal Acc Chem Res
Specialty Chemistry
Date 2010 Nov 11
PMID 21062101
Citations 114
Authors
Affiliations
Soon will be listed here.
Abstract

Conventional imaging methods, such as angiography, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide imaging, rely on contrast agents (iodine, gadolinium, and radioisotopes, for example) that are "always on." Although these indicators have proven clinically useful, their sensitivity is lacking because of inadequate target-to-background signal ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, that is, only "turned on" under certain conditions. These probes are engineered to emit signal only after binding a target tissue; this design greatly increases sensitivity and specificity in the detection of disease. Current research focuses on two basic types of activatable fluorescence probes. The first developed were conventional enzymatically activatable probes. These fluorescent molecules exist in the quenched state until activated by enzymatic cleavage, which occurs mostly outside of the cells. However, more recently, researchers have begun designing target-cell-specific activatable probes. These fluorophores exist in the quenched state until activated within targeted cells by endolysosomal processing, which results when the probe binds specific receptors on the cell surface and is subsequently internalized. In this Account, we present a review of the rational design and in vivo applications of target-cell-specific activatable probes. In engineering these probes, researchers have asserted control over a variety of factors, including photochemistry, pharmacological profile, and biological properties. Their progress has recently allowed the rational design and synthesis of target-cell-specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photochemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation, and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal emitted through these mechanisms. Given the wide range of photochemical mechanisms and properties, target-cell-specific activatable probes have considerable flexibility and can be adapted to specific diagnostic needs. A multitude of cell surface molecules, such as overexpressed growth factor receptors, are directly related to carcinogenesis and thus provide numerous targets highly specific for cancer. This discussion of the chemical, pharmacological, and biological basis of target-cell-specific activatable imaging probes, and methods for successfully designing them, underscores the systematic, rational basis for further developing in vivo cancer imaging.

Citing Articles

Molecular probes for in vivo optical imaging of immune cells.

Liu J, Cheng P, Xu C, Pu K Nat Biomed Eng. 2025; .

PMID: 39984703 DOI: 10.1038/s41551-024-01275-7.


Optical molecular imaging technology and its application in precise surgical navigation of liver cancer.

He P, Tang H, Zheng Y, Xu X, Peng X, Jiang T Theranostics. 2025; 15(3):1017-1034.

PMID: 39776802 PMC: 11700863. DOI: 10.7150/thno.102671.


Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications.

Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P Bioengineering (Basel). 2025; 11(12.

PMID: 39768110 PMC: 11727039. DOI: 10.3390/bioengineering11121292.


NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo.

Tang Y, Li Y, He C, Wang Z, Huang W, Fan Q Nat Commun. 2025; 16(1):278.

PMID: 39747854 PMC: 11696168. DOI: 10.1038/s41467-024-55096-y.


Excited-State Conjugation/De-Conjugation Driven Nonradiative Thermal Deactivation for Developing Fluorogenic Probes to Diagnose Cancers.

Zhang H, Lao G, Liu M, Jia Z, Liu J, Guo W Chem Biomed Imaging. 2024; 2(6):432-441.

PMID: 39474518 PMC: 11504161. DOI: 10.1021/cbmi.3c00107.


References
1.
Louie A, Huber M, Ahrens E, Rothbacher U, Moats R, Jacobs R . In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol. 2000; 18(3):321-5. DOI: 10.1038/73780. View

2.
Kobayashi H, Ogawa M, Alford R, Choyke P, Urano Y . New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2009; 110(5):2620-40. PMC: 3241938. DOI: 10.1021/cr900263j. View

3.
Weissleder R . A clearer vision for in vivo imaging. Nat Biotechnol. 2001; 19(4):316-7. DOI: 10.1038/86684. View

4.
Wu A, Senter P . Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005; 23(9):1137-46. DOI: 10.1038/nbt1141. View

5.
Weissleder R, Pittet M . Imaging in the era of molecular oncology. Nature. 2008; 452(7187):580-9. PMC: 2708079. DOI: 10.1038/nature06917. View